OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7033–7040

Wavelength independent multimode interference coupler

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7033-7040 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1117 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an ultra-broadband multimode interference (MMI) coupler with a wavelength range exceeding the O, E, S, C, L and U optical communication bands. For the first time, the dispersion property of the MMI section is engineered using a subwavelength grating structure to mitigate wavelength dependence of the device. We present a 2 × 2 MMI design with a bandwidth of 450nm, an almost fivefold enhancement compared to conventional designs, maintaining insertion loss, power imbalance and MMI phase deviation below 1dB, 0.6dB and 3°, respectively. The design is performed using an in-house tool based on the 2D Fourier Eigenmode Expansion Method (F-EEM) and verified with a 3D Finite Difference Time Domain (FDTD) simulator.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(260.2030) Physical optics : Dispersion
(160.1245) Materials : Artificially engineered materials
(260.2065) Physical optics : Effective medium theory
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Integrated Optics

Original Manuscript: October 26, 2012
Revised Manuscript: December 28, 2012
Manuscript Accepted: December 31, 2012
Published: March 13, 2013

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, "Wavelength independent multimode interference coupler," Opt. Express 21, 7033-7040 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol.13, 615–627 (1995). [CrossRef]
  2. D. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, and A. Liu, “Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach-Zehnder interferometers,” Opt. Lett.33, 530–532 (2008). [CrossRef] [PubMed]
  3. D. Kwong, Y. Zhang, A. Hosseini, Y. Liu, and R. T. Chen, “1×12 even fanout using multimode interference optical beam splitter on silicon nanomembrane,” Electron. Lett.46, 1281–1283 (2010). [CrossRef]
  4. M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting,” Appl. Opt.34, 6898–6910 (1995). [CrossRef] [PubMed]
  5. R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler,” Opt. Lett.36, 178–180 (2011). [CrossRef] [PubMed]
  6. A. Ortega-Moñux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and J. H. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelenght structures,” IEEE Photon. Technol. Lett.23, 1406–1408 (2011). [CrossRef]
  7. B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B73, 613–618 (2001). [CrossRef]
  8. D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N × N devices,” IEEE Photon. Technol. Lett.10, 830–832 (1998). [CrossRef]
  9. I. Molina-Fernández, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “Improving multimode interference couplers performance through index profile engineering,” J. Lightwave Technol.27, 1307–1314 (2009). [CrossRef]
  10. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12, 1004–1009 (1994). [CrossRef]
  11. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35, 3243–3245 (2010). [CrossRef]
  12. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express18, 20251–20262 (2010). [CrossRef] [PubMed]
  13. U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett.98, 243901 (2007). [CrossRef] [PubMed]
  14. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express18, 16146–16155 (2010). [CrossRef] [PubMed]
  15. P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express14, 4695–4702 (2006). [CrossRef] [PubMed]
  16. P. Cheben, P. Bock, J. Schmid, J. Lapointe, S. Janz, D. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett.35, 2526–2528 (2010). [CrossRef] [PubMed]
  17. I. Glesk, P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, and S. Janz, “All-optical switching using nonlinear subwavelength Mach-Zehnder on silicon,” Opt. Express19, 14031–14039 (2011). [CrossRef] [PubMed]
  18. R. Halir, A. Maese-Novo, A. Ortega-Moñux, and I. Molina-Fernández, “Dispositivo acoplador de guías de onda, y método de diseño de dicho dispositivo,” Spanish patent application serial number P201230280 (2012).
  19. R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express12, 13470–13477 (2012). [CrossRef]
  20. L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagn. Res.123, 447–465 (2012). [CrossRef]
  21. Z. Huang, R. Scarmozzino, and R. Osgood, “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett.10, 1292–1294 (1998). [CrossRef]
  22. M. T. Hill, X. J. M. Leijtens, G. D. Khoe, and M. K. Smit, “Optimizing imbalance and loss in 2×2 3-dB multimode interference couplers via access waveguide width,” J. Lightwave Technol.21, 2305–2313 (2003). [CrossRef]
  23. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP2, 466–475 (1956).
  24. http://ab-initio.mit.edu/meep/ .
  25. R. Ulrich and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Am.68, 583–592 (1978). [CrossRef]
  26. D. Pérez-Galacho, R. Halir, L. F. Zavargo-Peche, J. G. Wangüemert-Pérez, A. Ortega-Moñux, I. Molina-Fernández, and P. Cheben, “Adiabatic transitions for sub-wavelength grating waveguides,” European Conference on Integrated Optics (ECIO), April 16–18 2012, Sitges (Spain), paper 71.
  27. http://www.rsoftdesign.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited