OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7107–7117

Experimental study of dispersion characteristics for a series of microstructured fibers for customized supercontinuum generation

Zbyszek Holdynski, Marek Napierala, Michal Szymanski, Michal Murawski, Pawel Mergo, Pawel Marc, Leszek R. Jaroszewicz, and Tomasz Nasilowski  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7107-7117 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1519 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an experimental study of the chromatic dispersion properties for a series of microstructured fibers (MSFs) dedicated for a supercontinuum generation. With white-light interferometry application we analyze experimentally how the small variations of structural parameters, i.e. an air-hole diameter and a lattice constant, influence dispersion characteristics in different groups of MSFs. Our study provides useful information on how to design the fiber which is less sensitive to the fabrication imperfections. Moreover those investigations are the initial step to the development of the customized or tunable supercontinuum light sources based on MSFs with slightly changed structural parameters which can generate light with a different spectrum range, adapted to a proper application.

© 2013 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Nonlinear Optics

Original Manuscript: December 19, 2012
Revised Manuscript: February 8, 2013
Manuscript Accepted: February 12, 2013
Published: March 13, 2013

Zbyszek Holdynski, Marek Napierala, Michal Szymanski, Michal Murawski, Pawel Mergo, Pawel Marc, Leszek R. Jaroszewicz, and Tomasz Nasilowski, "Experimental study of dispersion characteristics for a series of microstructured fibers for customized supercontinuum generation," Opt. Express 21, 7107-7117 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibres (Cambridge University Press, 2010), pp. 32–96.
  2. Y. London and D. Sadot, “Nonlinear effects mitigation in coherent optical OFDM system in presence of high peak power,” J. Lightwave Technol. 29(21), 3275–3281 (2011). [CrossRef]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]
  4. J. Laegsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic band-gap fibers,” Opt. Express 16(13), 9628–9644 (2008). [CrossRef] [PubMed]
  5. C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11(22), 2832–2837 (2003). [CrossRef] [PubMed]
  6. H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12(10), 2231–2235 (2004). [CrossRef] [PubMed]
  7. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003). [CrossRef] [PubMed]
  8. M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999).
  9. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000). [CrossRef]
  10. A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9(13), 687–697 (2001). [CrossRef] [PubMed]
  11. W. Reeves, J. Knight, P. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10(14), 609–613 (2002). [CrossRef] [PubMed]
  12. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss,” Opt. Express 9(13), 681–686 (2001). [CrossRef] [PubMed]
  13. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25(11), 790–792 (2000). [CrossRef] [PubMed]
  14. P. Hlubina and J. Olszewski, “Phase retrieval from spectral interferograms including astationary-phase point,” Opt. Commun. 285(24), 4733–4738 (2012). [CrossRef]
  15. P. Lu, H. Ding, and S. J. Mihailov, “Direct measurement of the zero-dispersion wavelength of tapered fibres using broadband-light interferometry,” Meas. Sci. Technol. 16(8), 1631–1636 (2005). [CrossRef]
  16. L. Thevenaz, J.-P. Pellaux, and J.-P. Weid, “All-fibre interferometer for chromatic dispersion measurements,” J. Lightwave Technol. 6(1), 1–7 (1988). [CrossRef]
  17. P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fibre,” J. Lightwave Technol. 7(4), 703–716 (1989). [CrossRef]
  18. S. W. Harun, K. S. Lim, and H. Ahmad, “Investigation of dispersion characteristic in tapered fibre,” Laser Phys. 21(5), 945–947 (2011). [CrossRef]
  19. P. Peterka, J. Ka?ka, P. Honzátko, and D. Ká?ik, “Measurement of chromatic dispersion of microstructure optical fibres using interferometric method,” Appl. Opt. 38(2), 295–303 (2008).
  20. M. A. Galle, W. S. Mohammed, L. Qian, and P. W. E. Smith, “Single-arm three-wave interferometer for measuring dispersion of short lengths of fiber,” Opt. Express 15(25), 16896–16908 (2007). [CrossRef] [PubMed]
  21. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13(19), 7535–7540 (2005). [CrossRef] [PubMed]
  22. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13(10), 3728–3736 (2005). [CrossRef] [PubMed]
  23. P. Hlubina, M. Kadulov’a, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Europ. Opt. Soc. Rap. Public. 7, 12–17 (2012). [CrossRef]
  24. S. M. Kay, Intuitive probability and random processes using matlab (University of Rhode Island, 2006), pp. 13–365.
  25. http://www.lumerical.com/tcad-products/mode/ (website consulted in December 2012).
  26. Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002). [CrossRef] [PubMed]
  27. http://www.corning.com/docs/opticalfiber/pi1463.pdf (website consulted in December 2012).
  28. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12(19), 4614–4624 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited