OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7118–7124

Enhanced performance of InGaN/GaN based solar cells with an In0.05Ga0.95N ultra-thin inserting layer between GaN barrier and In0.2Ga0.8N well

Zhiwei Ren, Liu Chao, Xin Chen, Bijun Zhao, Xinfu Wang, Jinhui Tong, Jun Zhang, Xiangjing Zhuo, Danwei Li, Hanxiang Yi, and Shuti Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7118-7124 (2013)
http://dx.doi.org/10.1364/OE.21.007118


View Full Text Article

Enhanced HTML    Acrobat PDF (1226 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of ultra-thin inserting layer (UIL) on the photovoltaic performances of InGaN/GaN solar cells is investigated. With UIL implemented, the open-circuit voltage was increased from 1.4 V to 1.7 V, short-circuit current density was increased by 65% and external quantum efficiency was increased by 59%, compared to its counterparts at room temperature under 1-sun AM1.5G illumination. The improvements in electrical and photovoltaic properties are mainly attributed to the UIL which can boost the crystal quality and alleviate strain. Moreover, it can act as a transition layer for higher indium incorporation and an effective light sub-absorption layer in multiple quantum wells.

© 2013 OSA

OCIS Codes
(350.0350) Other areas of optics : Other areas of optics
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Energy

History
Original Manuscript: December 21, 2012
Revised Manuscript: February 12, 2013
Manuscript Accepted: February 14, 2013
Published: March 13, 2013

Citation
Zhiwei Ren, Liu Chao, Xin Chen, Bijun Zhao, Xinfu Wang, Jinhui Tong, Jun Zhang, Xiangjing Zhuo, Danwei Li, Hanxiang Yi, and Shuti Li, "Enhanced performance of InGaN/GaN based solar cells with an In0.05Ga0.95N ultra-thin inserting layer between GaN barrier and In0.2Ga0.8N well," Opt. Express 21, 7118-7124 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7118


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008). [CrossRef]
  2. X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang, Q. Hou, and J. Li, “Simulation of In0.65Ga0.35 N single-junction solar cell,” J. Phys. D Appl. Phys. 40(23), 7335–7338 (2007). [CrossRef]
  3. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007). [CrossRef]
  4. Y. Nanishi, Y. Satio, and T. Yamaguchi, “RF-molecular beam epitaxy growth and properties of InN and related alloys,” J. Appl. Phys. 42, 2549–2559 (2003).
  5. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Hal-ler, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of InGaN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003). [CrossRef]
  6. V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Ader-hold, O. Semchinova, and J. Garul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Phys. Status Solidi B 229(3), r1–r3 (2002). [CrossRef]
  7. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002). [CrossRef]
  8. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81(7), 1246–1248 (2002). [CrossRef]
  9. A. Barnett, C. Honsberg, D. Kirkpatrick, S. Kurtz, D. Moore, D. Salzman, R. Schwartz, J. Gray, S. Bowden, K. Goossen, M. Haney, D. Aiken, M. Wanlass, and K. Emery, “50% Efficient Solar Cell Architectures and Designs,” Proceedings of the 4th World Conference on Photovoltaic Energy Conversion2, 2560–2564 (2006). [CrossRef]
  10. H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1?xN tandem PV structures,” Sol. Energy Mater. Sol. Cells 87(1–4), 595–603 (2005). [CrossRef]
  11. C. Yang, X. Wang, H. Xiao, J. Ran, C. Wang, G. Hu, X. Wang, X. Zhang, J. Li, and J. Li, “Photovoltaic effects in InGaN structures with p–n junctions,” Phys. Status Solidi A 204(12), 4288–4291 (2007). [CrossRef]
  12. X. Chen, K. D. Matthews, D. Hao, W. J. Schaff, and L. F. Eastman, “Growth, fabrication, and characterization of InGaN solar cells,” Phys. Status Solidi A 205(5), 1103–1105 (2008). [CrossRef]
  13. J. J. Wierer, D. D. Koleske, and S. R. Lee, “Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 100(11), 111119 (2012). [CrossRef]
  14. R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011). [CrossRef]
  15. Y.-L. Hu, R. M. Farrell, C. J. Neufeld, M. Iza, S. C. Cruz, N. Pfaff, D. Simeonov, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells,” Appl. Phys. Lett. 100(16), 161101 (2012). [CrossRef]
  16. C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011). [CrossRef]
  17. K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010). [CrossRef]
  18. S. John, C. Soukoulis, M. H. Cohen, and E. N. Economou, “Theory of Electron Band Tails and the Urbach Optical-Absorption Edge,” Phys. Rev. Lett. 57(14), 1777–1780 (1986). [CrossRef] [PubMed]
  19. X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron. Dev. 23(9), 535–537 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited