OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7139–7147

Dual-coil magnetomotive optical coherence tomography for contrast enhancement in liquids

Jongsik Kim, Adeel Ahmad, and Stephen A. Boppart  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7139-7147 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5482 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Magnetomotive optical coherence tomography (MM-OCT) is a functional extension of OCT which utilizes magnetically responsive materials that are modulated by an external magnetic field for contrast enhancement and for elastography to assess the structural and viscoelastic properties of the surrounding tissues. Traditionally, magnetomotive contrast relies on the interaction between the displacement of magnetic particles induced by an external magnetic field and the micro-environmental restoring (elastic) force acting on the particles. When the restoring force from a sample containing magnetic particles is weak or non-existent, the MM-OCT signal-to-noise ratio (SNR) can degrade significantly. We have developed a novel solenoid configuration to enable MM-OCT imaging in samples that do not have an elastic restoring force, such as liquids. This coil configuration may potentially enable real-time MM-OCT imaging.

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.4090) Medical optics and biotechnology : Modulation techniques
(230.3810) Optical devices : Magneto-optic systems
(160.4236) Materials : Nanomaterials

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 23, 2013
Revised Manuscript: March 4, 2013
Manuscript Accepted: March 6, 2013
Published: March 14, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Jongsik Kim, Adeel Ahmad, and Stephen A. Boppart, "Dual-coil magnetomotive optical coherence tomography for contrast enhancement in liquids," Opt. Express 21, 7139-7147 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett.17(2), 151–153 (1992). [CrossRef] [PubMed]
  3. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett.21(7), 543–545 (1996). [CrossRef] [PubMed]
  4. A. L. Oldenburg, F. J. J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express13(17), 6597–6614 (2005). [CrossRef] [PubMed]
  5. A. L. Oldenburg, V. Crecea, S. A. Rinne, and S. A. Boppart, “Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues,” Opt. Express16(15), 11525–11539 (2008). [PubMed]
  6. S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt.10(4), 041208 (2005). [CrossRef] [PubMed]
  7. R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A.107(18), 8085–8090 (2010). [CrossRef] [PubMed]
  8. A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, “Imaging magnetically labeled cells with magnetomotive optical coherence tomography,” Opt. Lett.30(7), 747–749 (2005). [CrossRef] [PubMed]
  9. J. Kim, J. Oh, T. E. Milner, and J. S. Nelson, “Hemoglobin contrast in magnetomotive optical Doppler tomography,” Opt. Lett.31(6), 778–780 (2006). [CrossRef] [PubMed]
  10. J. Kim, J. Oh, T. E. Milner, and J. S. Nelson, “Imaging nanoparticle flow using magneto-motive optical Doppler tomography,” Nanotechnology18(3), 035504 (2007). [CrossRef] [PubMed]
  11. R. John, E. J. Chaney, and S. A. Boppart, “Dynamics of magnetic nanoparticle-based contrast agents in tissues tracked using magnetomotive optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.16(3), 691–697 (2010). [CrossRef]
  12. V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express17(25), 23114–23122 (2009). [CrossRef] [PubMed]
  13. A. L. Oldenburg and S. A. Boppart, “Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography,” Phys. Med. Biol.55(4), 1189–1201 (2010). [CrossRef] [PubMed]
  14. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008). [CrossRef] [PubMed]
  15. M. J. Suter, S. K. Nadkarni, G. Weisz, A. Tanaka, F. A. Jaffer, B. E. Bouma, and G. J. Tearney, “Intravascular optical imaging technology for investigating the coronary artery,” JACC Cardiovasc. Imaging4(9), 1022–1039 (2011). [CrossRef] [PubMed]
  16. F. J. Toublan, S. A. Boppart, and K. S. Suslick, “Tumor targeting by surface-modified protein microspheres,” J. Am. Chem. Soc.128(11), 3472–3473 (2006). [CrossRef] [PubMed]
  17. R. John, F. T. Nguyen, K. J. Kolbeck, E. J. Chaney, M. Marjanovic, K. S. Suslick, and S. A. Boppart, “Targeted multifunctional multimodal protein-shell microspheres as cancer imaging contrast agents,” Mol. Imaging Biol.14(1), 17–24 (2012). [CrossRef] [PubMed]
  18. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett.28(17), 1546–1548 (2003). [CrossRef] [PubMed]
  19. M. Mehrmohammadi, M. Qu, L. L. Ma, D. K. Romanovicz, K. P. Johnston, K. V. Sokolov, and S. Y. Emelianov, “Pulsed magneto-motive ultrasound imaging to detect intracellular accumulation of magnetic nanoparticles,” Nanotechnology22(41), 415105 (2011). [CrossRef] [PubMed]
  20. J. Oh, M. D. Feldman, J. Kim, C. Condit, S. Emelianov, and T. E. Milner, “Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound,” Nanotechnology17(16), 4183–4190 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (778 KB)     
» Media 2: AVI (749 KB)     
» Media 3: AVI (541 KB)     
» Media 4: AVI (3186 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited