OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7148–7155

A high efficiency architecture for cascaded Raman fiber lasers

V. R. Supradeepa, Jeffrey W. Nichsolson, Clifford E. Headley, Man F. Yan, Bera Palsdottir, and Dan Jakobsen  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7148-7155 (2013)
http://dx.doi.org/10.1364/OE.21.007148


View Full Text Article

Enhanced HTML    Acrobat PDF (1465 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a new high efficiency architecture for cascaded Raman fiber lasers based on a single pass cascaded amplifier configuration. Conversion is seeded at all intermediate Stokes wavelengths using a multi-wavelength seed source. A lower power Raman laser based on the conventional cascaded Raman resonator architecture provides a convenient seed source providing all the necessary wavelengths simultaneously. In this work we demonstrate a 1480nm laser pumped by an 1117nm Yb-doped fiber laser with maximum output power of 204W and conversion efficiency of 65% (quantum-limited efficiency is ~75%). We believe both the output power and conversion efficiency (relative to quantum-limited efficiency) are the highest reported for cascaded Raman fiber lasers.

© 2013 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.3550) Lasers and laser optics : Lasers, Raman

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 22, 2013
Revised Manuscript: March 6, 2013
Manuscript Accepted: March 8, 2013
Published: March 14, 2013

Citation
V. R. Supradeepa, Jeffrey W. Nichsolson, Clifford E. Headley, Man F. Yan, Bera Palsdottir, and Dan Jakobsen, "A high efficiency architecture for cascaded Raman fiber lasers," Opt. Express 21, 7148-7155 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7148


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak, and P. C. Becker, “High power, 1.48 µm cascaded Raman laser in germanosilicate fibers,” OSA Topic. Meeting, Optic. Amp. and Their Applications (1994).
  2. S. K. Sim, H. C. Lim, L. W. Lee, L. C. Chia, R. F. Wu, I. Cristiani, M. Rini, and V. Degiorgio, “High-power cascaded Raman fibre laser using phosphosilicate fiber,” Electron. Lett.40(12), 738–739 (2004). [CrossRef]
  3. Z. Xiong, N. Moore, Z. G. Li, and G. C. Lim, “10-W Raman fiber lasers at 1248 nm Using phosphosilicate fibers,” J. Lightwave Technol.21(10), 2377–2381 (2003). [CrossRef]
  4. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express17(26), 23678–23683 (2009). [CrossRef] [PubMed]
  5. R. Vallee, E. Belanger, B. Dery, M. Bernier, and D. Faucher, “Highly efficient and High-power Raman fiber laser based on broadband chirped fiber Bragg gratings,” J. Lightwave Technol.24(12), 5039–5043 (2006). [CrossRef]
  6. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).
  7. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express13(18), 6772–6776 (2005). [CrossRef] [PubMed]
  8. J. C. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. E. Headley, and D. J. DiGiovanni, “Picosecond pulse amplification in a core-pumped large-mode-area erbium fiber,” Opt. Lett.32(16), 2429–2431 (2007). [CrossRef] [PubMed]
  9. J. W. Nicholson, J. M. Fini, A. M. DeSantolo, X. Liu, K. Feder, P. S. Westbrook, V. R. Supradeepa, E. Monberg, F. DiMarcello, R. Ortiz, C. Headley, and D. J. DiGiovanni, “Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers,” Opt. Express20(22), 24575–24584 (2012). [CrossRef] [PubMed]
  10. V. R. Supradeepa, J. W. Nicholson, and K. Feder, “Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM2N.8.
  11. Y. Emori, K. Tanaka, C. Headley, and A. Fujisaki, “High-power cascaded Raman fiber laser with 41-W output power at 1480-nm band,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (OSA, 2007), paper CFI2. [CrossRef]
  12. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett.35(18), 3069–3071 (2010). [CrossRef] [PubMed]
  13. M. A. Arbore, Y. Zhou, G. Keaton, and T. Kane, “36dB gain in S-band EDFA with distributed ASE suppression,” in Optical Amplifiers and Their Applications, J. Nagel, S. Namiki, and L. Spiekman, eds., Vol. 77 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper PD4.
  14. P. D. Dragic, “Suppression of first order stimulated Raman scattering in erbium-doped fiber laser based LIDAR transmitters through induced bending loss,” Opt. Commun.250(4-6), 403–410 (2005). [CrossRef]
  15. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, “Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off,” Opt. Express14(12), 5103–5113 (2006). [CrossRef] [PubMed]
  16. V. R. Supradeepa, J. W. Nicholson, C. E. Headley, Y. Lee, B. Palsdottir, and D. Jakobsen, “Cascaded Raman fiber faser at 1480nm with output power of 104W,” no. 8237–48, SPIE photonics west 2012.
  17. Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007). [CrossRef]
  18. V. Kuhn, D. Kracht, J. Neumann, and P. Wessels, “Er-doped photonic crystal fiber amplifier with 70 W of output power,” Opt. Lett.36(16), 3030–3032 (2011). [CrossRef] [PubMed]
  19. W. A. Reed, A. J. Stentz, and T. A. Strasser, “Article comprising a cascaded raman fiber laser,” U.S. Patent 5,815,518 (1998).
  20. C. Headley and G. Agrawal, “Raman amplification in fiber optical communication systems,” (Academic Press, 2005).
  21. M. Rini, I. Cristiani, and V. Degiorgio, “Numerical modeling and optimization of cascaded CW Raman fiber lasers,” IEEE J. Quantum Electron.36(10), 1117–1122 (2000). [CrossRef]
  22. S. D. Jackson and P. H. Muir, “Theory and numerical simulation of nth-order cascaded Raman fiber lasers,” J. Opt. Soc. Am. B18(9), 1297–1306 (2001). [CrossRef]
  23. S. B. Papernyi, V. I. Karpov, and W. R. L. Clements, “Third-order cascaded Raman amplification,” in Optical Fiber Communication Conference (OFC) 2002, FB4–1.IEEE, (2002). [CrossRef]
  24. S. Papernyi, V. Karpov, and W. Clements, “Cascaded pumping system and method for producing distributed Raman amplification in optical fiber telecommunication systems,” U. S. Patent 6,480,326 (2002).
  25. http://ofscatalog.specialityphotonics.com/category/high-power-products-and-cladding-pumped-fibers .
  26. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited