OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7162–7170

Strain induced bandgap and refractive index variation of silicon

Jingnan Cai, Yasuhiko Ishikawa, and Kazumi Wada  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7162-7170 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1946 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a study of the influence of high strain on the bandgap and the refractive index of silicon. The results of photoluminescence show that with the strain applied, the silicon bandgap can be adjusted to 0.84 eV and the refractive index of silicon increases significantly. 1.4% change of refractive index of silicon was observed. The strain-induced bandgap shrinkage and absorption coefficient change of silicon are considered as the main cause of the significant refractive index change. The present work indicates that the application of strain is promising to control the refractive index of silicon in devices so that applications such as compensation of thermal effect in optical devices can be achieved.

© 2013 OSA

OCIS Codes
(040.6040) Detectors : Silicon
(130.0250) Integrated optics : Optoelectronics
(160.4760) Materials : Optical properties
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Integrated Optics

Original Manuscript: January 17, 2013
Revised Manuscript: March 5, 2013
Manuscript Accepted: March 5, 2013
Published: March 14, 2013

Jingnan Cai, Yasuhiko Ishikawa, and Kazumi Wada, "Strain induced bandgap and refractive index variation of silicon," Opt. Express 21, 7162-7170 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Pavesi and D. Lockwood, Silicon Photonics (Springer-Verlag, 2004).
  2. H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, “Hotspot-limited microprocessors: direct temperature and power distribution measurements,” IEEE J. Solid-State Circuits42(1), 56–65 (2007). [CrossRef]
  3. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express15(19), 11934–11941 (2007). [CrossRef] [PubMed]
  4. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15(2), 660–668 (2007). [CrossRef] [PubMed]
  5. N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film,” Opt. Express18(11), 11859–11866 (2010). [CrossRef] [PubMed]
  6. J. Welser, J. L. Hoyt, and J. F. Gibbons, “Electron mobility enhancement in strained-Si n-type metal-oxide- semiconductor field-effect transistors,” IEEE Electron Device Lett.15(3), 100–102 (1994). [CrossRef]
  7. Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett.82(13), 2044–2046 (2003). [CrossRef]
  8. P. H. Lim, S. Park, Y. Ishikawa, and K. Wada, “Enhanced direct bandgap emission in germanium by micromechanical strain engineering,” Opt. Express17(18), 16358–16365 (2009). [CrossRef] [PubMed]
  9. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006). [CrossRef] [PubMed]
  10. C. Schriever, C. Bohley, J. Schilling, and R. B. Wehrspohn, “Strained silicon photonics,” Materials5(12), 889–908 (2012).
  11. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2011). [CrossRef] [PubMed]
  12. Y. Amemiya, Y. Tanushi, T. Tokunaga, and S. Yokoyama, “Photoelastic effect in silicon ring resonators,” Jpn. J. Appl. Phys.47(4), 2910–2914 (2008). [CrossRef]
  13. C. Schriever, C. Bohley, and R. B. Wehrspohn, “Strain dependence of second-harmonic generation in silicon,” Opt. Lett.35(3), 273–275 (2010). [CrossRef] [PubMed]
  14. K.-H. Hong, J. Kim, S.-H. Lee, and J. K. Shin, “Strain-driven electronic band structure modulation of Si nanowires,” Nano Lett.8(5), 1335–1340 (2008). [CrossRef] [PubMed]
  15. H. Nakamura, “Strain effects on the band structure for Si nanowires,” in Proceedings of IEEE Conference on Nanotechnology (IEEE NANO Organizers, 2009), pp. 555–558.
  16. Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett.82(13), 2044–2046 (2003). [CrossRef]
  17. J. Munguía, G. Bremond, J. M. Bluet, J. M. Hartmann, and M. Mermoux, “Strain dependence of indirect band gap for strained silicon on insulator wafers,” Appl. Phys. Lett.93(10), 102101 (2008). [CrossRef]
  18. K. Yoshimoto, R. Suzuki, Y. Ishikawa, and K. Wada, “Bandgap control using strained beam structures for Si photonic devices,” Opt. Express18(25), 26492–26498 (2010). [CrossRef] [PubMed]
  19. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter39(3), 1871–1883 (1989). [CrossRef] [PubMed]
  20. M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct.40(7), 1615–1632 (2003). [CrossRef]
  21. J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994). [CrossRef] [PubMed]
  22. K. Bücher, J. Bruns, and H. G. Wagemann, “Absorption coefficient of silicon: An assessment of measurements and the simulation of temperature variation,” J. Appl. Phys.75(2), 1127–1132 (1994). [CrossRef]
  23. A. A. Patrin and M. I. Tarasik, “Optical-absorption spectrum of silicon containing internal elastic stresses,” J. Appl. Spectrosc.65(4), 598–603 (1998). [CrossRef]
  24. V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers–Kronig Relations in Optical Materials Research (Springer-Verlag, 2005).
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited