OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7196–7201

Plasmonically enhanced hot electron based photovoltaic device

Fatih B. Atar, Enes Battal, Levent E. Aygun, Bihter Daglar, Mehmet Bayindir, and Ali K. Okyay  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7196-7201 (2013)
http://dx.doi.org/10.1364/OE.21.007196


View Full Text Article

Enhanced HTML    Acrobat PDF (1107 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Solar Energy

History
Original Manuscript: December 19, 2012
Revised Manuscript: March 4, 2013
Manuscript Accepted: March 6, 2013
Published: March 14, 2013

Citation
Fatih B. Atar, Enes Battal, Levent E. Aygun, Bihter Daglar, Mehmet Bayindir, and Ali K. Okyay, "Plasmonically enhanced hot electron based photovoltaic device," Opt. Express 21, 7196-7201 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7196


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011). [CrossRef] [PubMed]
  2. T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits,” Appl. Phys. Lett.101(7), 073905 (2012). [CrossRef]
  3. M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012). [CrossRef] [PubMed]
  4. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett.11(12), 5426–5430 (2011). [CrossRef] [PubMed]
  5. F. Wang and N. A. Melosh, “Theoretical analysis of hot electron collection in metal-insulator-metal devices,” Proc. SPIE8111, 81110O, 81110O-6 (2011). [CrossRef]
  6. C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron.46(5), 633–643 (2010). [CrossRef]
  7. W. G. Spitzer, C. R. Crowell, and M. M. Atalla, “Mean free path of photoexcited electrons in Au,” Phys. Rev. Lett.8(2), 57–58 (1962). [CrossRef]
  8. J. C. Fisher and I. Giaever, “Tunneling through thin insulating layers,” J. Appl. Phys.32(2), 172–177 (1961). [CrossRef]
  9. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.
  10. T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, and A. A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films520(22), 6793–6802 (2012). [CrossRef]
  11. Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano6(4), 3390–3396 (2012). [CrossRef] [PubMed]
  12. C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano6(7), 6301–6307 (2012). [CrossRef] [PubMed]
  13. S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012). [CrossRef] [PubMed]
  14. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B110(32), 15700–15707 (2006). [CrossRef] [PubMed]
  15. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007). [CrossRef]
  16. C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett.94(21), 213102 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited