OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7216–7221

Robust 9-QAM digital recovery for spectrum shaped coherent QPSK signal

Bo Huang, Junwen Zhang, Jianjun Yu, Ze Dong, Xinying Li, Haiyan Ou, Nan Chi, and Wen Liu  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7216-7221 (2013)
http://dx.doi.org/10.1364/OE.21.007216


View Full Text Article

Enhanced HTML    Acrobat PDF (1472 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose 9-ary quadrature amplitude modulation (9-QAM) data recovery for polarization multiplexing-quadrature phase shift keying (PM-QPSK) signal in presence of strong filtering to approach Nyquist bandwidth. The decision-directed least radius distance (DD-LRD) algorithm for blind equalization is used for 9-QAM recovery and intersymbol interference (ISI) compression. It shows the robustness under strong filtering to recover 9-QAM signal rather than QPSK. We demonstrate 112 Gb/s spectrum shaped PM-QPSK signal by wavelength selective switch (WSS) in a 25-GHz channel spacing Nyquist wavelength division multiplexing (NWDM). The final equalized signal is detected by maximum likelihood sequence decision (MLSD) for data bit-error-ratio (BER) measurement. Optical signal-to-noise ratio (OSNR) tolerance is improved by 0.5 dB at a BER of 1x10−3 compared to constant modulus algorithm (CMA) plus post-filter algorithm.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 20, 2012
Revised Manuscript: January 24, 2013
Manuscript Accepted: February 7, 2013
Published: March 14, 2013

Citation
Bo Huang, Junwen Zhang, Jianjun Yu, Ze Dong, Xinying Li, Haiyan Ou, Nan Chi, and Wen Liu, "Robust 9-QAM digital recovery for spectrum shaped coherent QPSK signal," Opt. Express 21, 7216-7221 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7216


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express20(1), 317–337 (2012). [CrossRef] [PubMed]
  2. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010). [CrossRef]
  3. K. Kikuchi, Y. Ishikawa, and K. Katoh, “Coherent demodulation of optical quadrature duobinary signal with spectral efficiency of 4 bit/s/Hz per polarization,” in Proceedings of ECOC2007, Berlin, Germany, paper 9.3.4 (2007).
  4. I. Lyubomirsky, “Quadrature duobinary for high-spectral efficiency 100G transmission,” J. Lightwave Technol.28(1), 91–96 (2010). [CrossRef]
  5. F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. deWaardt, “111-Gb/s PolMux-quadrature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technol. Lett.22(11), 751–753 (2010). [CrossRef]
  6. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol.30(11), 1664–1676 (2012). [CrossRef]
  7. J. Li, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Building up low-complexity spectrally-efficient Terabit superchannels by receiver-side duobinary shaping,” Opt. Express20(9), 10271–10282 (2012). [CrossRef] [PubMed]
  8. Z. Dong, J. Yu, Z. Jia, H. Chien, X. Li, and G. Chang, “7×224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012). [CrossRef]
  9. J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 G PDM-CSRZ-QPSK and PDM-16QAM with a SE of 4 b/s/Hz,” J. Lightwave Technol.31(4), 515–522 (2013). [CrossRef]
  10. H.-C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(24), 3965–3971 (2012). [CrossRef]
  11. X. Xu, B. Chatelain, and D. V. Plant, “Decision directed least radius distance algorithm for blind equalization in a dual-polarization 16-QAM system,” in Proceedings of OFC2012, LA., paper OM2H (2012)
  12. M. Oderder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun.36(5), 605–612 (1988). [CrossRef]
  13. M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proceedings of ECOC2009, Vienna, Austria, paper P3.08 (2009).
  14. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27(8), 989–999 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited