OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7240–7249

ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange

Yu Lim Chen, Li-Chung Kuo, Min Lun Tseng, Hao Ming Chen, Chih-Kai Chen, Hung Ji Huang, Ru-Shi Liu, and Din Ping Tsai  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7240-7249 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1431 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A low-cost and efficient photocatalytic reactor for environmental treatment and green technology was presented. ZnO nanorods firmly growing on polycarbonate optical disk substrate are generally perpendicular to the substrate as the immobilized photocatalyst of the spinning disk reactor. The photocatalytic efficiency and durability of the ZnO nanorods are effectively demonstrated.

© 2013 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(220.0220) Optical design and fabrication : Optical design and fabrication
(240.6670) Optics at surfaces : Surface photochemistry
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: February 7, 2013
Revised Manuscript: March 6, 2013
Manuscript Accepted: March 6, 2013
Published: March 15, 2013

Yu Lim Chen, Li-Chung Kuo, Min Lun Tseng, Hao Ming Chen, Chih-Kai Chen, Hung Ji Huang, Ru-Shi Liu, and Din Ping Tsai, "ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange," Opt. Express 21, 7240-7249 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972). [CrossRef] [PubMed]
  2. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev.95(1), 69–96 (1995). [CrossRef]
  3. N. L. Tarwal and P. S. Patil, “Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci.256(24), 7451–7456 (2010). [CrossRef]
  4. L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics4(4), 43004 (2010). [CrossRef] [PubMed]
  5. H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C115(44), 21971–21980 (2011). [CrossRef]
  6. M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke, and P. Schmuki, “TiO2 nanotubes: photocatalyst for cancer cell killing,” Phys. Status Solidi RRL2(4), 194–196 (2008). [CrossRef]
  7. Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi, “Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol.77(7), 2325–2331 (2011). [CrossRef] [PubMed]
  8. Y. J. Jang, C. Simer, and T. Ohm, “Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue,” Mater. Res. Bull.41(1), 67–77 (2006). [CrossRef]
  9. H. Q. Liu, J. X. Yang, J. H. Liang, Y. X. Huang, and C. Y. Tangz, “Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle,” J. Am. Chem. Soc.91, 1287–1291 (2008).
  10. W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1029–1030 (2003). [CrossRef]
  11. H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater.1(5), 742–747 (2011). [CrossRef]
  12. J. J. Chen, C. S. Wu, P. C. Wu, and D. P. Tsai, “Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting,” J. Phys. Chem. C115(1), 210–216 (2011). [CrossRef]
  13. D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano4(6), 3270–3276 (2010). [CrossRef] [PubMed]
  14. K. Okazaki, D. Nakamura, M. Higashihata, P. Iyamperumal, and T. Okada, “Lasing characteristics of an optically pumped single ZnO nanosheet,” Opt. Express19(21), 20389–20394 (2011). [CrossRef] [PubMed]
  15. N. Xu, Y. Cui, Z. Hu, W. Yu, J. Sun, N. Xu, and J. Wu, “Photoluminescence and low-threshold lasing of ZnO nanorod arrays,” Opt. Express20(14), 14857–14863 (2012). [CrossRef] [PubMed]
  16. C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photon pumped ZnO nanowire lasers,” Opt. Express17(10), 7893–7900 (2009). [CrossRef] [PubMed]
  17. C.-L. Yeh, H.-R. Hsu, S.-H. Chen, and Y. Liu, “Near infrared enhancement in CIGS-based solar cells utilizing a ZnO: H window layer,” Opt. Express20(S6), A806–A811 (2012). [CrossRef]
  18. J. Ahn, H. Park, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Nanostructured n-ZnO / thin film p-silicon heterojunction light-emitting diodes,” Opt. Express19(27), 26006–26010 (2011). [CrossRef] [PubMed]
  19. J.-T. Chen, W.-C. Lai, C.-H. Chen, Y.-Y. Yang, J.-K. Sheu, K.-W. Lin, and L.-W. Lai, “Sputtered ZnO-SiO2 nanocomposite light-emitting diodes with flat-top nanosecond laser treatment,” Opt. Express20(18), 19635–19642 (2012). [CrossRef] [PubMed]
  20. F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, “Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire,” ACS Nano6(10), 9229–9236 (2012). [CrossRef] [PubMed]
  21. D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano5(10), 7748–7753 (2011). [CrossRef] [PubMed]
  22. P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C114(25), 11162–11168 (2010). [CrossRef]
  23. C. Y. Chang and N. L. Wu, “Process analysis on photocatalyzed dye decomposition for water treatment with TiO2 -coated rotating disk reactor,” Ind. Eng. Chem. Res.49(23), 12173–12179 (2010). [CrossRef]
  24. C. N. Lin, C. Y. Chang, H. J. Huang, D. P. Tsai, and N. L. Wu, “Photocatalytic degradation of methyl orange by a multi-layer rotating disk reactor,” Environ. Sci. Pollut. Res. Int.19(9), 3743–3750 (2012). [CrossRef] [PubMed]
  25. A. K. Ray and A. A. C. M. Beenackers, “Development of a new photocatalytic reactor for water purification,” Catal. Today40(1), 73–83 (1998). [CrossRef]
  26. K. V. K. Boodhoo and R. J. Jachuck, “Process intensification: spinning disk reactor for styrene polymerization,” Appl. Therm. Eng.20(12), 1127–1146 (2000). [CrossRef]
  27. J. R. Burns and R. J. J. Jachuck, “Determination of liquid–solid mass transfer coefficients for a spinning disc reactor using a limiting current technique,” Int. J. Heat Mass Transfer48(12), 2540–2547 (2005). [CrossRef]
  28. M. Vicevic, K. V. K. Boodhoo, and K. Scott, “Catalytic isomerisation of α-pinene oxide to campholenic aldehyde using silica-supported zinc triflate catalysts. II. Performance of immobilised catalysts in a continuous spinning disc reactor,” Chem. Eng. J.133(1-3), 43–57 (2007). [CrossRef]
  29. D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, and M. Laîné, “Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water,” Water Res.34(11), 2927–2940 (2000). [CrossRef]
  30. H. C. Yatmaz, C. Wallis, and C. R. Howarth, “The spinning disc reactor-studies on a novel TiO2 photocatalytic reactor,” Chemosphere42(4), 397–403 (2001). [CrossRef] [PubMed]
  31. X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys.76(4), 046401 (2013). [CrossRef] [PubMed]
  32. T. Van Gerven, G. Mul, J. Moulijn, and A. Stankiewicz, “A review of intensification of photocatalytic processes,” Chem. Eng. Prog.46(9), 781–789 (2007). [CrossRef]
  33. J. Barber, “Photosynthetic energy conversion: natural and artificial,” Chem. Soc. Rev.38(1), 185–196 (2009). [CrossRef] [PubMed]
  34. O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels,” Nano Lett.9(2), 731–737 (2009). [CrossRef] [PubMed]
  35. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011). [CrossRef]
  36. Z. Y. Wang, H. C. Chou, C. S. Wu, D. P. Tsai, and G. Mul, “CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy,” Appl. Catal. A380(1-2), 172–177 (2010). [CrossRef]
  37. P. S. Mukherjee and A. K. Ray, “Major challenges in the design of a large-scale photocatalytic reactor for water treatment,” Chem. Eng. Technol.22(3), 253–260 (1999). [CrossRef]
  38. The Photonics Industry & Technology Development Association, PIDA photonics market report, “Global optoelectronics market and Taiwan photonics industry report for 2011–2012” (PIDA, 2011). http://www.pida.org.tw/report/html/member/2012_Q1/2012_Q1_Ch06.pdf
  39. S. Al-Qaradawi and S. R. Salman, “Photocatalytic degradation of methyl orange as a model compound,” J. Photochem. Photobiol. Chem.148(1-3), 161–168 (2002). [CrossRef]
  40. H. J. Zhou and S. S. Wong, “A facile and mild synthesis of 1-D ZnO, CuO, and alpha-Fe2O3 nanostructures and nanostructured arrays,” ACS Nano2(5), 944–958 (2008). [CrossRef] [PubMed]
  41. K. Y. Jung, Y. C. Kang, and S. B. Park, “Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis,” J. Mater. Sci. Lett.16(22), 1848–1849 (1997). [CrossRef]
  42. C. Hariharan, “Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited,” Appl. Catal. A304, 55–61 (2006). [CrossRef]
  43. S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res.4(11), 1013–1098 (2011). [CrossRef]
  44. S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater.10(1), 013001–0130019 (2009). [CrossRef]
  45. J.-M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catal. Today53(1), 115–129 (1999). [CrossRef]
  46. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater.19(22), 3771–3782 (2007). [CrossRef]
  47. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337(6098), 1072–1074 (2012). [CrossRef] [PubMed]
  48. Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett.11(3), 1111–1116 (2011). [CrossRef] [PubMed]
  49. H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev.41(17), 5654–5671 (2012). [CrossRef] [PubMed]
  50. H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano6(8), 7362–7372 (2012). [CrossRef] [PubMed]
  51. M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012). [CrossRef] [PubMed]
  52. L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem.22(5), 2244–2253 (2012). [CrossRef]
  53. H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C113(18), 7574–7578 (2009). [CrossRef]
  54. J. J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai, “Improved photocatalytic activity of shell-isolated plasmonic photocatalyst Au@SiO2/TiO2 by promoted LSPR,” J. Phys. Chem. C116(50), 26535–26542 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (2901 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited