OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7316–7327

Blind-deconvolution optical-resolution photoacoustic microscopy in vivo

Jianhua Chen, Riqiang Lin, Huina Wang, Jing Meng, Hairong Zheng, and Liang Song  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7316-7327 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2397 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical-resolution photoacoustic microscopy (OR-PAM) is becoming a vital tool for studying the microcirculation system in vivo. By increasing the numerical aperture of optical focusing, the lateral resolution of OR-PAM can be improved; however, the depth of focus and thus the imaging range will be sacrificed correspondingly. In this work, we report our development of blind-deconvolution optical-resolution photoacoustic microscopy (BD-PAM) that can provide a lateral resolution ~2-fold finer than that of conventional OR-PAM (3.04 vs. 5.78μm), without physically increasing the system’s numerical aperture. The improvement achieved with BD-PAM is demonstrated by imaging graphene nanoparticles and the microvasculature of mice ears in vivo. Our results suggest that BD-PAM may become a valuable tool for many biomedical applications that require both fine spatial resolution and extended depth of focus.

© 2013 OSA

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 18, 2013
Revised Manuscript: February 19, 2013
Manuscript Accepted: February 20, 2013
Published: March 15, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Jianhua Chen, Riqiang Lin, Huina Wang, Jing Meng, Hairong Zheng, and Liang Song, "Blind-deconvolution optical-resolution photoacoustic microscopy in vivo," Opt. Express 21, 7316-7327 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012). [CrossRef] [PubMed]
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006). [CrossRef] [PubMed]
  3. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009). [CrossRef] [PubMed]
  4. J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt.17(5), 056016 (2012). [CrossRef] [PubMed]
  5. S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010). [CrossRef] [PubMed]
  6. J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011). [CrossRef] [PubMed]
  7. Z. Xie, W. Roberts, P. Carson, X. Liu, C. Tao, and X. Wang, “Evaluation of bladder microvasculature with high-resolution photoacoustic imaging,” Opt. Lett.36(24), 4815–4817 (2011). [CrossRef] [PubMed]
  8. T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt.17(6), 061209 (2012). [CrossRef] [PubMed]
  9. K. Jansen, A. F. van der Steen, H. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett.36(5), 597–599 (2011). [CrossRef] [PubMed]
  10. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express16(5), 3362–3367 (2008). [CrossRef] [PubMed]
  11. S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett.35(1), 1–3 (2010). [CrossRef] [PubMed]
  12. A. de la Zerda, Y. M. Paulus, R. Teed, S. Bodapati, Y. Dollberg, B. T. Khuri-Yakub, M. S. Blumenkranz, D. M. Moshfeghi, and S. S. Gambhir, “Photoacoustic ocular imaging,” Opt. Lett.35(3), 270–272 (2010). [CrossRef] [PubMed]
  13. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010). [CrossRef] [PubMed]
  14. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003). [CrossRef] [PubMed]
  15. J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt.48(10), D299–D306 (2009). [CrossRef] [PubMed]
  16. J. Meng, L. V. Wang, L. Ying, D. Liang, and L. Song, “Compressed-sensing photoacoustic computed tomography in vivo with partially known support,” Opt. Express20(15), 16510–16523 (2012). [CrossRef]
  17. J. Meng, L. V. Wang, D. Liang, and L. Song, “In vivo optical-resolution photoacoustic computed tomography with compressed sensing,” Opt. Lett.37(22), 4573–4575 (2012). [CrossRef] [PubMed]
  18. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008). [CrossRef] [PubMed]
  19. L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett.36(7), 1236–1238 (2011). [CrossRef] [PubMed]
  20. R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express3(7), 1724–1731 (2012). [CrossRef] [PubMed]
  21. S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011). [CrossRef] [PubMed]
  22. C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012). [CrossRef] [PubMed]
  23. D. A. Agard and J. W. Sedat, “Three-dimensional architecture of a polytene nucleus,” Nature302(5910), 676–681 (1983). [CrossRef] [PubMed]
  24. J.-B. Sibarita, “Deconvolution Microscopy,” Adv. Biochem. Eng. Biotechnol.95, 201–243 (2005). [CrossRef] [PubMed]
  25. M. Laasmaa, M. Vendelin, and P. Peterson, “Application of regularized Richardson-Lucy algorithm for deconvolution of confocal microscopy images,” J. Microsc.243(2), 124–140 (2011). [CrossRef] [PubMed]
  26. X. Lv, “Modified robust anisotropic diffusion denoising technique with regularized Richardson-Lucy deconvolution for two-photon microscopic images,” Opt. Eng.47(4), 047004 (2008). [CrossRef]
  27. C. F. Gainer, U. Utzinger, and M. Romanowski, “Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution,” J. Biomed. Opt.17(7), 076003 (2012). [CrossRef] [PubMed]
  28. G. Liu, S. Yousefi, Z. Zhi, and R. K. Wang, “Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach,” Opt. Express19(19), 18135–18148 (2011). [CrossRef] [PubMed]
  29. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE. Trans. Img. Proc14(9), 1254–1264 (2005). [CrossRef]
  30. C. Zhang, C. Li, and L. V. Wang, “Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry: experimental validation,” IEEE. Photonics. J.2(1), 57–66 (2010). [CrossRef]
  31. Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004). [CrossRef] [PubMed]
  32. T. Jetzfellner and V. Ntziachristos, “Performance of Blind Deconvolution in Optoacoustic Tomography,” JIOHS04(04), 385–393 (2011).
  33. L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett.102(5), 053704 (2013). [CrossRef]
  34. L. Zeng, G. Liu, D. Yang, and X. Ji, “3D-visual laser-diode-based photoacoustic imaging,” Opt. Express20(2), 1237–1246 (2012). [CrossRef] [PubMed]
  35. C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012). [CrossRef] [PubMed]
  36. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am.62(1), 55–59 (1972). [CrossRef]
  37. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J.79(6), 745–754 (1974). [CrossRef]
  38. D. A. Fish, A. M. Brinicombe, E. R. Pike, and J. G. Walker, “Blind deconvolution by means of the Richardson-Lucy algorithm,” J. Opt. Soc. Am. A12(1), 58–65 (1995). [CrossRef]
  39. V. Loyev and Y. Yitzhaky, “Initialization of iterative parametric algorithms for blind deconvolution of motion-blurred images,” Appl. Opt.45(11), 2444–2452 (2006). [CrossRef] [PubMed]
  40. D. S. C. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt.36(8), 1766–1775 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited