OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7384–7399

Comparison of single distance phase retrieval algorithms by considering different object composition and the effect of statistical and structural noise

R. C. Chen, L. Rigon, and R. Longo  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7384-7399 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2931 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Phase retrieval is a technique for extracting quantitative phase information from X-ray propagation-based phase-contrast tomography (PPCT). In this paper, the performance of different single distance phase retrieval algorithms will be investigated. The algorithms are herein called phase-attenuation duality Born Algorithm (PAD-BA), phase-attenuation duality Rytov Algorithm (PAD-RA), phase-attenuation duality Modified Bronnikov Algorithm (PAD-MBA), phase-attenuation duality Paganin algorithm (PAD-PA) and phase-attenuation duality Wu Algorithm (PAD-WA), respectively. They are all based on phase-attenuation duality property and on weak absorption of the sample and they employ only a single distance PPCT data. In this paper, they are investigated via simulated noise-free PPCT data considering the fulfillment of PAD property and weakly absorbing conditions, and with experimental PPCT data of a mixture sample containing absorbing and weakly absorbing materials, and of a polymer sample considering different degrees of statistical and structural noise. The simulation shows all algorithms can quantitatively reconstruct the 3D refractive index of a quasi-homogeneous weakly absorbing object from noise-free PPCT data. When the weakly absorbing condition is violated, the PAD-RA and PAD-PA/WA obtain better result than PAD-BA and PAD-MBA that are shown in both simulation and mixture sample results. When considering the statistical noise, the contrast-to-noise ratio values decreases as the photon number is reduced. The structural noise study shows that the result is progressively corrupted by ring-like artifacts with the increase of structural noise (i.e. phantom thickness). The PAD-RA and PAD-PA/WA gain better density resolution than the PAD-BA and PAD-MBA in both statistical and structural noise study.

© 2013 OSA

OCIS Codes
(100.5070) Image processing : Phase retrieval
(110.6960) Imaging systems : Tomography
(110.7440) Imaging systems : X-ray imaging

ToC Category:
Image Processing

Original Manuscript: December 3, 2012
Revised Manuscript: February 25, 2013
Manuscript Accepted: February 26, 2013
Published: March 18, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

R. C. Chen, L. Rigon, and R. Longo, "Comparison of single distance phase retrieval algorithms by considering different object composition and the effect of statistical and structural noise," Opt. Express 21, 7384-7399 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society of Industrial and Applied Mathematics, 2001).
  2. R. C. Chen, R. Longo, L. Rigon, F. Zanconati, A. De Pellegrin, F. Arfelli, D. Dreossi, R. H. Menk, E. Vallazza, T. Q. Xiao, and E. Castelli, “Measurement of the linear attenuation coefficients of breast tissues by synchrotron radiation computed tomography,” Phys. Med. Biol.55(17), 4993–5005 (2010). [CrossRef] [PubMed]
  3. J. Baruchel, J. Y. Buffiere, P. Cloetens, M. Di Michiel, E. Ferrie, W. Ludwig, E. Maire, and L. Salvo, “Advances in synchrotron radiation microtomography,” Scr. Mater.55(1), 41–46 (2006). [CrossRef]
  4. A. Momose, “Recent advances in X-ray phase imaging,” Jpn. J. Appl. Phys.44(9A), 6355–6367 (2005). [CrossRef]
  5. P. Cloetens, M. Pateyron-Salomé, J. Y. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys.81(9), 5878–5886 (1997). [CrossRef]
  6. K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett.77(14), 2961–2964 (1996). [CrossRef] [PubMed]
  7. X. Z. Wu and H. Liu, “A general theoretical formalism for X-ray phase contrast imaging,” J. XRay Sci. Technol.11(1), 33–42 (2003). [PubMed]
  8. T. E. Gureyev, T. J. Davis, A. Pogany, S. C. Mayo, and S. W. Wilkins, “Optical phase retrieval by use of first Born- and Rytov-type approximations,” Appl. Opt.43(12), 2418–2430 (2004). [CrossRef] [PubMed]
  9. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett.75(19), 2912–2914 (1999). [CrossRef]
  10. J. P. Guigay, M. Langer, R. Boistel, and P. Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett.32(12), 1617–1619 (2007). [CrossRef] [PubMed]
  11. A. V. Bronnikov, “Theory of quantitative phase-contrast computed tomography,” J. Opt. Soc. Am. A19(3), 472–480 (2002). [CrossRef] [PubMed]
  12. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002). [CrossRef] [PubMed]
  13. A. Groso, R. Abela, and M. Stampanoni, “Implementation of a fast method for high resolution phase contrast tomography,” Opt. Express14(18), 8103–8110 (2006). [CrossRef] [PubMed]
  14. X. Z. Wu and H. Liu, “X-Ray cone-beam phase tomography formulas based on phase-attenuation duality,” Opt. Express13(16), 6000–6014 (2005). [CrossRef] [PubMed]
  15. A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express19(11), 10359–10376 (2011). [CrossRef] [PubMed]
  16. L. D. Turner, B. B. Dhal, J. P. Hayes, A. P. Mancuso, K. A. Nugent, D. Paterson, R. E. Scholten, C. Q. Tran, and A. G. Peele, “X-ray phase imaging: Demonstration of extended conditions for homogeneous objects,” Opt. Express12(13), 2960–2965 (2004). [CrossRef] [PubMed]
  17. M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express18(7), 6423–6436 (2010). [CrossRef] [PubMed]
  18. J. Moosmann, R. Hofmann, A. V. Bronnikov, and T. Baumbach, “Nonlinear phase retrieval from single-distance radiograph,” Opt. Express18(25), 25771–25785 (2010). [CrossRef] [PubMed]
  19. A. M. Yan, X. Z. Wu, and H. Liu, “Robustness of phase retrieval methods in x-ray phase contrast imaging: A comparison,” Med. Phys.38(9), 5073–5080 (2011). [CrossRef] [PubMed]
  20. M. Langer, P. Cloetens, J. P. Guigay, and F. Peyrin, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys.35(10), 4556–4566 (2008). [CrossRef] [PubMed]
  21. M. N. Boone, W. Devulder, M. Dierick, L. Brabant, E. Pauwels, and L. Van Hoorebeke, “Comparison of two single-image phase-retrieval algorithms for in-line x-ray phase-contrast imaging,” J. Opt. Soc. Am. A29(12), 2667–2672 (2012). [CrossRef]
  22. R. C. Chen, L. Rigon, and R. Longo, “Quantitative 3D refractive index decrement reconstruction using single-distance phase-contrast tomography data,” J. Phys. D Appl. Phys.44(49), 495401 (2011). [CrossRef]
  23. R. C. Chen, H. L. Xie, L. Rigon, R. Longo, E. Castelli, and T. Q. Xiao, “Phase retrieval in quantitative x-ray microtomography with a single sample-to-detector distance,” Opt. Lett.36(9), 1719–1721 (2011). [CrossRef] [PubMed]
  24. X. Z. Wu, H. Liu, and A. M. Yan, “X-ray phase-attenuation duality and phase retrieval,” Opt. Lett.30(4), 379–381 (2005). [CrossRef] [PubMed]
  25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, New York, 1999).
  26. T. E. Gureyev, D. M. Paganin, G. R. Myers, Y. I. Nesterets, and S. W. Wilkins, “Phase-and-amplitude computer tomography,” Appl. Phys. Lett.89(3), 034102 (2006). [CrossRef]
  27. B. D. Arhatari, F. De Carlo, and A. G. Peele, “Direct quantitative tomographic reconstruction for weakly absorbing homogeneous phase objects,” Rev. Sci. Instrum.78(5), 053701 (2007). [CrossRef] [PubMed]
  28. A. Abrami, F. Arfelli, R. C. Barroso, A. Bergamaschi, F. Bille, P. Bregant, F. Brizzi, K. Casarin, E. Castelli, V. Chenda, L. D. Palma, D. Dreossi, A. Fava, R. Longo, L. Mancini, R. H. Menk, F. Montanari, A. Olivo, S. Pani, A. Pillon, E. Quai, S. R. Kaiser, L. Rigon, T. Rokvic, M. Tonutti, G. Tromba, A. Vaseotto, C. Venanzi, F. Zanconati, A. Zanetti, and F. Zanini, “Medical applications of synchrotron radiation at the SYRMEP beamline of ELETTRA,” Nucl Instrum Meth A548(1-2), 221–227 (2005). [CrossRef]
  29. R. C. Chen, D. Dreossi, L. Mancini, R. Menk, L. Rigon, T. Q. Xiao, and R. Longo, “PITRE: software for phase-sensitive X-ray image processing and tomography reconstruction,” J. Synchrotron Radiat.19(5), 836–845 (2012). [CrossRef] [PubMed]
  30. P. Thurner, F. Beckmann, and B. Muller, “An optimization procedure for spatial and density resolution in hard X-ray micro-computed tomography,” Nucl Instrum Meth B225(4), 599–603 (2004). [CrossRef]
  31. E. Hadjidemetriou, M. D. Grossberg, and S. K. Nayar, “Resolution selection using generalized entropies of multiresolution histograms,” Computer Vison Eccv2350, 220–235 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited