OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7400–7410

Design and laboratory demonstration of an achromatic vector vortex coronagraph

Naoshi Murakami, Shoki Hamaguchi, Moritsugu Sakamoto, Ryohei Fukumoto, Akitoshi Ise, Kazuhiko Oka, Naoshi Baba, and Motohide Tamura  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7400-7410 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1166 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A vector vortex coronagraph (VVC) is one of promising means for imaging extremely faint objects around bright stars such as exoplanets. We present a design of an achromatic VVC, in which an axially-symmetric half-wave plate (AHP) is placed between crossed polarization filters (circular polarizer and analyzer). The circular polarizer and the analyzer are both composed of a polarizer and a quarter-wave plate (QWP). We demonstrate, via Jones calculus and Fourier analysis, that the achromatic stellar elimination can theoretically be realized by optimal polarization filters, even when chromatic AHP and QWPs are used. We carried out laboratory demonstrations of the designed VVC using a photonic-crystal AHP. As a result, we observed achromatic coronagraphic performance, a light suppression level of 7 × 10−5, over a wavelength from 543 nm to 633 nm.

© 2012 OSA

OCIS Codes
(350.1260) Other areas of optics : Astronomical optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(050.4865) Diffraction and gratings : Optical vortices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: September 11, 2012
Revised Manuscript: October 28, 2012
Manuscript Accepted: October 30, 2012
Published: March 18, 2013

Naoshi Murakami, Shoki Hamaguchi, Moritsugu Sakamoto, Ryohei Fukumoto, Akitoshi Ise, Kazuhiko Oka, Naoshi Baba, and Motohide Tamura, "Design and laboratory demonstration of an achromatic vector vortex coronagraph," Opt. Express 21, 7400-7410 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Kalas, J. R. Graham, E. Chiang, M. P. Fitzgerald, M. Clampin, E. S. Kite, K. Stapelfeldt, C. Marois, and J. Krist, “Optical images of an exosolar planet 25 light-years from Earth,” Science322, 1345–1348 (2008). [CrossRef] [PubMed]
  2. C. Marois, B. Macintosh, T. Barman, B. Zuckerman, I. Song, J. Patience, D. Lafrenière, and R. Doyon“Direct imaging of multiple planets orbiting the star HR 8799,” Science322, 1348–1352 (2008). [CrossRef] [PubMed]
  3. C. Thalmann, J. Carson, M. Janson, M. Goto, M. McElwain, S. Egner, M. Feldt, J. Hashimoto, Y. Hayano, T. Henning, K. W. Hodapp, R. Kandori, H. Klahr, T. Kudo, N. Kusakabe, C. Mordasini, J. -I. Morino, H. Suto, R. Suzuki, and M. Tamura, “Discovery of the coldest imaged companion of a sun-like star,” Astrophys. J.707, L123–L127 (2009). [CrossRef]
  4. A. -M. Lagrange, M. Bonnefoy, G. Chauvin, D. Apai, D. Ehrenreich, A. Boccaletti, D. Gratadour, D. Rouan, D. Mouillet, S. Lacour, and M. Kasper, “A giant planet imaged in the disk of the young star β Pictoris,” Science, 329, 57–59 (2010). [CrossRef] [PubMed]
  5. G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett.30, 3308–3310 (2005). [CrossRef]
  6. D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J.633, 1191–1200 (2005). [CrossRef]
  7. D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie “The four-quadrant phase-mask coronagraph. I. principle,” Publ. Astron. Soc. Pac.112, 1479–1486 (2000). [CrossRef]
  8. N. Murakami, R. Uemura, N. Baba, J. Nishikawa, M. Tamura, N. Hashimoto, and L. Abe, “An eight-octant phase-mask coronagraph,” Publ. Astron. Soc. Pac.120, 1112–1118 (2008). [CrossRef]
  9. A. Carlotti, G. Ricort, and C. Aime, “Phase mask coronagraphy using a Mach-Zehnder interferometer,” Astron. Astrophys.504, 663–671 (2009). [CrossRef]
  10. C. Jenkins, “Optical vortex coronagraphs on ground-based telescopes,” Mon. Not. R. Astron. Soc.384, 515–524 (2008). [CrossRef]
  11. J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett.97, 053901 (2006). [CrossRef] [PubMed]
  12. E. Mari, G. Anzolin, F. Tamburini, M. Prasciolu, G. Umbriaco, A. Bianchini, C. Barbieri, and F. Romanato, “Fabrication and testing of l = 2 optical vortex phase masks for coronography,” Opt. Express18, 2339–2344 (2010) [CrossRef] [PubMed]
  13. G. A. Swartzlander, E. L. Ford, R. S. Abdul-Malik, L. M. Close, M. A. Peters, D. M. Palacios, and D. W. Wilson, “Astronomical demonstration of an optical vortex coronagraph,” Opt. Express16, 10200–10207 (2008). [CrossRef] [PubMed]
  14. S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci.A44, 247–262 (1956).
  15. M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt.34, 1401–1407 (1987). [CrossRef]
  16. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Formation of helical beams by use of Pancharatnam-Berry phase optical elements,” Opt. Lett.27, 1875–1877 (2002). [CrossRef]
  17. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings,” Opt. Lett.28, 510–512 (2003). [CrossRef] [PubMed]
  18. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Spiral phase elements obtained by use of discrete space-variant subwavelength gratings,” Opt. Commun.251, 306–314 (2005). [CrossRef]
  19. G. Biener, Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Manipulation of polarization-dependent multivortices with quasi-periodic subwavelength structures,” Opt. Lett.31, 1594–1596 (2006). [CrossRef] [PubMed]
  20. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Manipulation of the Pancharatnam phase in vectorial vortices,” Opt. Express14, 4208–4220 (2006). [CrossRef] [PubMed]
  21. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Polychromatic vectorial vortex formed by geometric phase elements,” Opt. Lett.32, 847–849 (2007). [CrossRef] [PubMed]
  22. Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation for far-field polarimetry by use of subwavelength dielectric gratings,” Opt. Lett.30, 2245–2247 (2005). [CrossRef] [PubMed]
  23. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization scrambling for image encryption obtained with subwavelength gratings,” Opt. Commun.261, 5–12 (2006). [CrossRef]
  24. D. Mawet, N. Murakami, C. Delacroix, E. Serabyn, O. Absil, N. Baba, J. Baudrand, A. Boccaletti, R. Burruss, R. Chipman, P. Forsberg, S. Habraken, S. Hamaguchi, C. Hanot, A. Ise, M. Karlsson, B. Kern, J. Krist, A. Kuhnert, M. Levine, K. Liewer, S. McClain, S. McEldowney, B. Mennesson, D. Moody, H. Murakami, A. Niessner, J. Nishikawa, N. O’Brien, K. Oka, P. Park, P. Piron, L. Pueyo, P. Riaud, M. Sakamoto, M. Tamura, J. Trauger, D. Shemo, J. Surdej, N. Tabirian, W. Traub, J. Wallace, and K Yokochi, “Taking the vector vortex coronagraph to the next level for ground- and space-based exoplanet imaging instruments: review of technology developments in the USA, Japan, and Europe,” in Techniques and Instrumentation for Detection of Exoplanets V, S. Shaklan, ed., Proc. SPIE, 8151, 815108 (2011).
  25. C. Delacroix, P. Forsberg, M. Karlsson, D. Mawet, O. Absil, C. Hanot, J. Surdej, and S. Habraken, “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Appl. Opt.51, 5897–5902 (2012). [CrossRef] [PubMed]
  26. D. Mawet, E. Serabyn, K. Liewer, Ch. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, “Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration,” Opt. Express17, 1902–1918 (2009). [CrossRef] [PubMed]
  27. D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar Observatory,” Astrophys. J.709, 53–57 (2010). [CrossRef]
  28. E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature (London)4641018–1020 (2010) [CrossRef]
  29. G. A. Swartzlander, “Achromatic optical vortex lens,” Opt. Lett.31, 2042–2044 (2006). [CrossRef] [PubMed]
  30. Y. Tokizane, K. Oka, and R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express17, 14517–14525 (2009). [CrossRef] [PubMed]
  31. N. Murakami and N. Baba, “Pupil-remapping mirrors for a four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac.117, 295–299 (2005). [CrossRef]
  32. L. Abe, N. Murakami, J. Nishikawa, and M. Tamura, “Removal of central obscuration and spider arm effects with beam-shaping coronagraphy,” Astron. Astrophys.451, 363–373 (2006). [CrossRef]
  33. D. Mawet, E. Serabyn, J. K. Wallace, and L. Pueyo, “Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph,” Opt. Lett.36, 1506–1508 (2011). [CrossRef] [PubMed]
  34. G. A. Swartzlander, “Broadband nulling of a vortex phase mask,” Opt. Lett.30, 2876–2878 (2005). [CrossRef] [PubMed]
  35. N. Murakami, N. Baba, A. Ise, M. Sakamoto, and K. Oka, “Laboratory demonstration of an optical vortex mask coronagraph using photonic crystal,” in Proceedings of the conference In the Spirit of Lyot 2010: Direct Detection of Exoplanets and Circumstellar Disks, A. Boccaletti, ed., (University of Paris Diderot, Paris, France, 2010).
  36. S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys. Lett.74, 463–465 (1999). [CrossRef]
  37. T. Kawashima, K. Miura, T. Sato, and S. Kawakami “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett.77, 2613–2615 (2000). [CrossRef]
  38. N. Murakami, J. Nishikawa, K. Yokochi, M. Tamura, N. Baba, and L. Abe, “Achromatic eight-octant phase-mask coronagraph using photonic crystal,” Astrophys. J.714, 772–777 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited