OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7427–7438

Adjustable subwavelength localization in a hybrid plasmonic waveguide

S. Belan, S. Vergeles, and P. Vorobev  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7427-7438 (2013)
http://dx.doi.org/10.1364/OE.21.007427


View Full Text Article

Enhanced HTML    Acrobat PDF (2306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The hybrid plasmonic waveguide consists of a high-permittivity dielectric nanofiber embedded in a low-permittivity dielectric near a metal surface. This architecture is considered as one of the most perspective candidates for long-range subwavelength guiding. We present qualitative analysis and numerical results which reveal advantages of the special waveguide design when dielectric constant of the cylinder is greater than the absolute value of the dielectric constant of the metal. In this case the arbitrary subwavelength mode size can be achieved by controlling the gap width. Our qualitative analysis is based on consideration of sandwich-like conductor-gap-dielectric system. The numerical solution is obtained by expansion of the hybrid plasmonic mode over single cylinder modes and the surface plasmon-polariton modes of the metal screen and matching the boundary conditions.

© 2013 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 8, 2013
Revised Manuscript: March 2, 2013
Manuscript Accepted: March 4, 2013
Published: March 18, 2013

Citation
S. Belan, S. Vergeles, and P. Vorobev, "Adjustable subwavelength localization in a hybrid plasmonic waveguide," Opt. Express 21, 7427-7438 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7427


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 1999).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Phot.4, 83–91 (2010). [CrossRef]
  3. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “Hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Phot.2(8), 496–500 (2008). [CrossRef]
  4. V. J. Sorger, Z. Ye, R. F. Oulton, Y. W. G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011). [CrossRef]
  5. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18(1), 348–363 (2010). [CrossRef] [PubMed]
  6. R. Borghi, F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a perfectly conducting circular cylinder near a plane surface: cylindrical-wave approach,” J. Opt. Soc. Am. A.13(3), 483–493 (1996). [CrossRef]
  7. R. Borghi, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a dielectric circular cylinder parallel to a general reflecting flat surface,” J. Opt. Soc. Am. A.14(7), 1500–1504 (1997). [CrossRef]
  8. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.82(8), 1158–1160 (1997).
  9. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metaldi-electric multilayers,” Phys. Rev. B75(24), 241402 (2007). [CrossRef]
  10. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep Subwavelength Terahertz Waveguides Using Gap Magnetic Plasmon”, Phys. Rev. Let.102, 043904 (2009). [CrossRef]
  11. S. H. Nam, A. J. Taylor, and A. Efimov, “Subwavelength hybrid terahertz waveguides,” Opt. Express.17(25), 22890–22897 (2009). [CrossRef]
  12. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010). [CrossRef]
  13. D. Marcuse, Light Transmission Optics (New York: Van Nostrand Reinhold, 1972).
  14. A. G. Bulushev, E. M. Dianov, and O. G. Okhotnikov, “Propagation of the radiation in two identical coupled waveguides,” Quantum Electron.15, 1433–1441 (1988).
  15. W. Zakowicz, “Two coupled dielectric cylindrical waveguides,” J. Opt. Soc. Am. A14(3), 580–587 (1997). [CrossRef]
  16. R. F. Oulton, V. J. Sorger, T. Zentgraf, Ren-Min Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009). [CrossRef] [PubMed]
  17. I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B70, 155416 (2004). [CrossRef]
  18. R. Borghi, F. Frezza, M. Santarsiero, and G. Schettini, “Angular spectrum of modified cylindrical wave-functions,” Int. J. Infrared Millim. Waves20(10), 1795–1801 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited