OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7439–7446

90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial

Kun Song, Yahong Liu, Quanhong Fu, Xiaopeng Zhao, Chunrong Luo, and Weiren Zhu  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7439-7446 (2013)
http://dx.doi.org/10.1364/OE.21.007439


View Full Text Article

Enhanced HTML    Acrobat PDF (3431 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a more efficient way to obtain much stronger polarization rotatory power by constructing a composite chiral metamaterial (CCMM) which is achieved via the combination of the cut-wire pairs (CWPs) and a purely chiral metamaterial (PCMM) composed of conjugated gammadion resonators. Owing to the strong coupling between the CWPs and PCMM, the polarization rotation in our CCMM is more gigantic than that of the PCMM. Furthermore, the CCMM proposed in this paper can function as a wide-angle 90° polarization rotator for different substrate permittivity without needing to adjust its geometric parameters. Due to the unique properties, the CCMM may greatly benefit potential applications including designing a tunable 90°-polarization rotator, microwave devices, telecommunication, and so on.

© 2013 OSA

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: January 22, 2013
Revised Manuscript: March 2, 2013
Manuscript Accepted: March 2, 2013
Published: March 18, 2013

Citation
Kun Song, Yahong Liu, Quanhong Fu, Xiaopeng Zhao, Chunrong Luo, and Weiren Zhu, "90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial," Opt. Express 21, 7439-7446 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7439


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl.17(5), 695–706 (2003). [CrossRef]
  2. J. B. Pendry, “A chiral route to negative refraction,” Science306(5700), 1353–1355 (2004). [CrossRef] [PubMed]
  3. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009). [CrossRef] [PubMed]
  4. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009). [CrossRef]
  5. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009). [CrossRef]
  6. Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four ‘U’ split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010). [CrossRef]
  7. R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011). [CrossRef]
  8. Z. Li, K. B. Alici, H. Caglayan, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Composite chiral metamaterials with negative refractive index and high values of the figure of merit,” Opt. Express20(6), 6146–6156 (2012). [CrossRef] [PubMed]
  9. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006). [CrossRef] [PubMed]
  10. J. Dong, J. Zhou, T. Koschny, and C. M. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express17(16), 14172–14179 (2009). [CrossRef] [PubMed]
  11. R. J. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010). [CrossRef] [PubMed]
  12. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010). [CrossRef] [PubMed]
  13. Y. L. Zhang, W. Jin, X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Asymmetric fishnet metamaterials with strong optical activity,” Opt. Express20(10), 10776–10787 (2012). [CrossRef] [PubMed]
  14. K. Song, X. Zhao, Q. Fu, Y. Liu, and W. Zhu, “Wide-angle 90°-polarization rotator using chiral metamaterial with negative refractive index,” J. Electromagn. Waves Appl.26(14–15), 1967–1976 (2012). [CrossRef]
  15. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007). [CrossRef] [PubMed]
  16. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express16(16), 11802–11807 (2008). [CrossRef] [PubMed]
  17. M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett.106(10), 103902 (2011). [CrossRef] [PubMed]
  18. R. Zhao, J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive casimir force in chiral metamaterials,” Phys. Rev. Lett.103(10), 103602 (2009). [CrossRef] [PubMed]
  19. R. Zhao, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Repulsive casimir forces with finite-thickness slabs,” Phys. Rev. B83(7), 075108 (2011). [CrossRef]
  20. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat Commun3, 942–948 (2012). [CrossRef] [PubMed]
  21. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870–876 (2012). [CrossRef] [PubMed]
  22. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93(19), 191911 (2008). [CrossRef]
  23. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial,” Opt. Express19(15), 14290–14299 (2011). [CrossRef] [PubMed]
  24. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012). [CrossRef]
  25. I. V. Shadrivov, “Pure nonlinear optical activity in metamaterials,” Appl. Phys. Lett.101(4), 041911 (2012). [CrossRef]
  26. J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B86(3), 035448 (2012). [CrossRef]
  27. X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express20(14), 16050–16058 (2012). [CrossRef] [PubMed]
  28. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010). [CrossRef]
  29. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4521–4525 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited