OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7570–7576

Gain-switched pulses from InGaAs ridge-quantum-well lasers limited by intrinsic dynamical gain suppression

Shaoqiang Chen, Masahiro Yoshita, Takashi Ito, Toshimitsu Mochizuki, Hidefumi Akiyama, and Hiroyuki Yokoyama  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7570-7576 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (955 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gain-switched pulses of InGaAs double-quantum-well lasers fabricated from identical epitaxial laser wafers were measured under both current injection and optical pumping conditions. The shortest output pulse widths were nearly identical (about 40 ps) both for current injection and optical pumping; this result attributed the dominant pulse-width limitation factor to the intrinsic gain properties of the lasers. We quantitatively compared the experimental results with theoretical calculations based on rate equations incorporating gain nonlinearities. Close consistency between the experimental data and the calculations was obtained only when we assumed a dynamically suppressed gain value deviated from the steady-state gain value supported by standard microscopic theories.

© 2013 OSA

OCIS Codes
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.5390) Ultrafast optics : Picosecond phenomena

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 18, 2013
Revised Manuscript: March 1, 2013
Manuscript Accepted: March 3, 2013
Published: March 19, 2013

Shaoqiang Chen, Masahiro Yoshita, Takashi Ito, Toshimitsu Mochizuki, Hidefumi Akiyama, and Hiroyuki Yokoyama, "Gain-switched pulses from InGaAs ridge-quantum-well lasers limited by intrinsic dynamical gain suppression," Opt. Express 21, 7570-7576 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ross, S. I. Green, and J. Brand, “Short-pulse optical communications experiments,” Proc. IEEE58(10), 1719–1726 (1970). [CrossRef]
  2. H. Yokoyama, H. Guo, T. Yoda, K. Takashima, K. Sato, H. Taniguchi, and H. Ito, “Two-photon bioimaging with picosecond optical pulses from a semiconductor laser,” Opt. Express14(8), 3467–3471 (2006). [CrossRef] [PubMed]
  3. A. Sato, S. Kono, K. Saito, K. Sato, and H. Yokoyama, “A high-peak-power UV picosecond-pulse light source based on a gain-switched 1.55 microm laser diode and its application to time-resolved spectroscopy of blue-violet materials,” Opt. Express18(3), 2522–2527 (2010). [CrossRef] [PubMed]
  4. J. Auyeung, “Picosecond optical pulse generation at gigahertz rates by direct modulation of a semiconductor laser,” Appl. Phys. Lett.38(5), 308–310 (1981). [CrossRef]
  5. N. Stelmakh, J. M. Lourtioz, G. Marquebielle, G. Volluet, and J. P. Hirtz, “Generation of high-energy (0.3 μJ) short pulses (<400 ps) from a gain-switched laser diode stack with subnanosecond electrical pump pulses,” IEEE J. Sel. Top. Quantum Electron.3(2), 245–249 (1997). [CrossRef]
  6. J. J. Zayhowski, J. Ochoa, and A. Mooradian, “Gain-switched pulsed operation of microchip lasers,” Opt. Lett.14(23), 1318–1320 (1989). [CrossRef] [PubMed]
  7. D. J. Channin, “Effect of gain saturation on injection laser switching,” J. Appl. Phys.50(6), 3858–3860 (1979). [CrossRef]
  8. Y. Arakawa and A. Yariv, “Quantum well lasers–Gain, spectra, dynamics,” IEEE J. Quantum Electron.22(9), 1887–1899 (1986). [CrossRef]
  9. M. Okano, P. Huai, M. Yoshita, S. Inada, H. Akiyama, K. Kamide, K. Asano, and T. Ogawa, “Robust carrier-induced suppression of peak gain inherent to quantum-wire lasers,” J. Phys. Soc. Jpn.80(11), 114716 (2011). [CrossRef]
  10. P. Huai, H. Akiyama, Y. Tomio, and T. Ogawa, “Coulomb enhancement and suppression of peak gain in quantum wire lasers,” Jpn. J. Appl. Phys.46(44), L1071–L1073 (2007). [CrossRef]
  11. J. Huang and L. W. Casperson, “Gain and saturation in semiconductor lasers,” Opt. Quantum Electron.25(6), 369–390 (1993).
  12. S. Q. Chen, M. Yoshita, T. Ito, T. Mochizuki, H. Akiyama, H. Yokoyama, K. Kamide, and T. Ogawa, “Analysis of gain-switching characteristics including strong gain saturation effects in low-dimensional semiconductor lasers,” Jpn. J. Appl. Phys.51, 098001–098002 (2012). [CrossRef]
  13. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th edition (World Scientific Pub Co Inc., 2009).
  14. M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron.22(9), 1915–1921 (1986). [CrossRef]
  15. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer, 1999).
  16. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, 1995).
  17. N. K. Dutta, “Temperature dependence of threshold current of GaAs quantum well lasers,” Electron. Lett.18(11), 451–453 (1982). [CrossRef]
  18. R. Frankenberger and R. Schimpe, “Origin of nonlinear gain saturation in index-guided InGaAsP laser diodes,” Appl. Phys. Lett.60(22), 2720–2722 (1992). [CrossRef]
  19. K. L. Hall, J. Mark, E. P Ippen, and G Eisenstein, “Femtosecond gain dynamics in InGaAsP optical amplifiers,” Appl. Phys. Lett.56, 1740–1742 (1990).
  20. M. Grupen and K. Hess, “Severe gain suppression due to dynamic carrier heating in quantum well lasers,” Appl. Phys. Lett.70(7), 808–810 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited