OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7608–7613

Complex liquid crystal alignments accomplished by Talbot self-imaging

Xi-kui Hu, Bing-yan Wei, Xiao-wen Lin, Wei Hu, Ge Zhu, Vladimir Chigrinov, and Yan-qing Lu  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7608-7613 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2094 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce Talbot self-imaging into photoalignment technique to record Talbot carpet into an LC cell. Through the design of the setup, different images are presented on a single sample. By taking a simple 1D grating mask as an example, an LC cell with complex alignment structures applicable as Mach-Zehnder interferometer arrays is demonstrated. Further mask design permits feasibility of various structures which are practicable for many applications. This method may facilitate the fabrication of photonic applications such as optical communication, computing and sensing, etc.

© 2013 OSA

OCIS Codes
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(160.3710) Materials : Liquid crystals
(080.1238) Geometric optics : Array waveguide devices

ToC Category:
Optical Devices

Original Manuscript: January 29, 2013
Revised Manuscript: March 7, 2013
Manuscript Accepted: March 9, 2013
Published: March 19, 2013

Xi-kui Hu, Bing-yan Wei, Xiao-wen Lin, Wei Hu, Ge Zhu, Vladimir Chigrinov, and Yan-qing Lu, "Complex liquid crystal alignments accomplished by Talbot self-imaging," Opt. Express 21, 7608-7613 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. H. Lin, H. W. Ren, Y. H. Wu, Y. Zhao, J. Y. Fang, Z. B. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure,” Opt. Express13(22), 8746–8752 (2005). [CrossRef] [PubMed]
  2. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express12(25), 6382–6389 (2004). [CrossRef] [PubMed]
  3. H. W. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express14(18), 8031–8036 (2006). [CrossRef] [PubMed]
  4. J. Feng, Y. Zhao, S. S. Li, X. W. Lin, F. Xu, and Y. Q. Lu, “Fiber optic pressure sensor based on tunable liquid crystal technology,” IEEE Photon. J.2(3), 292–298 (2010). [CrossRef]
  5. X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. B. Jin, and Y. Q. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv.1(3), 032133 (2011). [CrossRef]
  6. D. K. Yang and S. T. Wu, eds., Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  7. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, eds., Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).
  8. O. Yaroshchuk and Y. Reznikov, “Photoalignment of liquid crystals: basics and current trends,” J. Mater. Chem.22(2), 286–300 (2011). [CrossRef]
  9. V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun.266(1), 1–5 (2006). [CrossRef]
  10. X. Zhao, A. Bermak, F. Boussaid, T. Du, and V. G. Chigrinov, “High-resolution photoaligned liquid-crystal micropolarizer array for polarization imaging in visible spectrum,” Opt. Lett.34(23), 3619–3621 (2009). [CrossRef] [PubMed]
  11. H. Akiyama, T. Kawara, H. Takada, H. Takatsu, V. Chigrinov, E. Prudnikova, V. Kozenkov, and H. Kwok, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst.29(10), 1321–1327 (2002). [CrossRef]
  12. M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing-angles,” Nature381(6579), 212–215 (1996). [CrossRef]
  13. S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett.88(4), 041104 (2006). [CrossRef]
  14. W. Y. Wu and A. Y. G. Fuh, “Rewritable liquid crystal gratings fabricated using photoalignment effect in dye-doped poly(vinyl alcohol) film,” Jpn. J. Appl. Phys.46(10A), 6761–6766 (2007). [CrossRef]
  15. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express14(22), 10558–10564 (2006). [CrossRef] [PubMed]
  16. W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express20(5), 5384–5391 (2012). [CrossRef] [PubMed]
  17. W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov, and Y.-Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett.100(11), 111116 (2012). [CrossRef]
  18. X. W. Lin, W. Hu, X. K. Hu, X. Liang, Y. Chen, H. Q. Cui, G. Zhu, J. N. Li, V. Chigrinov, and Y. Q. Lu, “Fast response dual-frequency liquid crystal switch with photo-patterned alignments,” Opt. Lett.37(17), 3627–3629 (2012). [CrossRef] [PubMed]
  19. H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag.9, 401–407 (1836).
  20. K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt.27, 1–108 (1989). [CrossRef]
  21. A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. B27(6), 2931–2937 (2009). [CrossRef]
  22. L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, “Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect,” Opt. Express18(19), 19485–19494 (2010). [CrossRef] [PubMed]
  23. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995). [CrossRef]
  24. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, B. R. Kimball, V. G. Chigrinov, and H. S. Kwok, “Study of azo dye surface command photoalignment material for photonics applications,” Appl. Opt.49(10), 1720–1727 (2010). [CrossRef] [PubMed]
  25. I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophotonics6(1), 061001 (2012). [CrossRef]
  26. A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O’Brien, “Multimode quantum interference of photons in multiport integrated devices,” Nat Commun2, 224 (2011). [CrossRef] [PubMed]
  27. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics6(1), 45–49 (2011). [CrossRef]
  28. B. J. Metcalf, N. Thomas-Peter, J. B. Spring, D. Kundys, M. A. Broome, P. C. Humphreys, X.-M. Jin, M. Barbieri, W. Steven Kolthammer, J. C. Gates, B. J. Smith, N. K. Langford, P. G. R. Smith, and I. A. Walmsley, “Multiphoton quantum interference in a multiport integrated photonic device,” Nat Commun4, 1356 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited