OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7633–7640

Terahertz conductivity of reduced graphene oxide films

J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, Ji-Yong Park, Soonil Lee, and Y. H. Ahn  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7633-7640 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1976 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We performed time-domain terahertz (THz) spectroscopy on reduced graphene oxide (rGO) network films coated on quartz substrates from dispersion solutions by spraying method. The rGO network films demonstrate high conductivity of about 900 S/cm in the THz frequency range after a high temperature reduction process. The frequency-dependent conductivities and the refractive indexes of the rGO films have been obtained and analyzed with respect to the Drude free-electron model, which is characterized by large scattering rate. Finally, we demonstrate that the THz conductivities can be manipulated by controlling the reduction process, which correlates well with the DC conductivity above the percolation limit.

© 2013 OSA

OCIS Codes
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(160.4236) Materials : Nanomaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: January 2, 2013
Revised Manuscript: March 8, 2013
Manuscript Accepted: March 11, 2013
Published: March 20, 2013

J. T. Hong, K. M. Lee, B. H. Son, S. J. Park, D. J. Park, Ji-Yong Park, Soonil Lee, and Y. H. Ahn, "Terahertz conductivity of reduced graphene oxide films," Opt. Express 21, 7633-7640 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004). [CrossRef] [PubMed]
  2. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005). [CrossRef] [PubMed]
  3. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007). [CrossRef] [PubMed]
  4. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum hall effect in graphene,” Science315(5817), 1379 (2007). [CrossRef] [PubMed]
  5. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2.,” Nat. Nanotechnol.3(4), 206–209 (2008). [CrossRef] [PubMed]
  6. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol.3(8), 491–495 (2008). [CrossRef] [PubMed]
  7. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009). [CrossRef]
  8. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009). [CrossRef] [PubMed]
  9. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  10. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010). [CrossRef]
  11. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011). [CrossRef] [PubMed]
  12. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009). [CrossRef] [PubMed]
  13. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010). [CrossRef] [PubMed]
  14. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008). [CrossRef] [PubMed]
  15. G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol.3(5), 270–274 (2008). [CrossRef] [PubMed]
  16. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8(1), 323–327 (2008). [CrossRef] [PubMed]
  17. O. C. Compton and S. T. Nguyen, “Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials,” Small6(6), 711–723 (2010). [CrossRef] [PubMed]
  18. Q. He, S. Wu, S. Gao, X. Cao, Z. Yin, H. Li, P. Chen, and H. Zhang, “Transparent, flexible, all-reduced graphene oxide thin film transistors,” ACS Nano5(6), 5038–5044 (2011). [CrossRef] [PubMed]
  19. L. L. Zhang, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, and R. S. Ruoff, “Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors,” Nano Lett.12(4), 1806–1812 (2012). [CrossRef] [PubMed]
  20. S. J. Han, K. A. Jenkins, A. Valdes Garcia, A. D. Franklin, A. A. Bol, and W. Haensch, “High-frequency graphene voltage amplifier,” Nano Lett.11(9), 3690–3693 (2011). [CrossRef] [PubMed]
  21. Y. Wu, Y. M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472(7341), 74–78 (2011). [CrossRef] [PubMed]
  22. P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett.8(12), 4248–4251 (2008). [CrossRef] [PubMed]
  23. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4(7), 532–535 (2008). [CrossRef]
  24. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101(19), 196405 (2008). [CrossRef] [PubMed]
  25. M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, and Y. J. Chabal, “Unusual infrared-absorption mechanism in thermally reduced graphene oxide,” Nat. Mater.9(10), 840–845 (2010). [CrossRef] [PubMed]
  26. J. L. Tomaino, A. D. Jameson, J. W. Kevek, M. J. Paul, A. M. van der Zande, R. A. Barton, P. L. McEuen, E. D. Minot, and Y.-S. Lee, “Terahertz imaging and spectroscopy of large-area single-layer graphene,” Opt. Express19(1), 141–146 (2011). [CrossRef] [PubMed]
  27. I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett.12(2), 551–555 (2012). [CrossRef] [PubMed]
  28. M. J. Paul, J. L. Tomaino, J. W. Kevek, T. Deborde, Z. J. Thompson, E. D. Minot, and Y. S. Lee, “Terahertz imaging of inhomogeneous electrodynamics in single-layer graphene embedded in dielectrics,” Appl. Phys. Lett.101(9), 091109 (2012). [CrossRef]
  29. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett.12(7), 3711–3715 (2012). [CrossRef] [PubMed]
  30. G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C. W. Lee, J. Park, I. Maeng, J. H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal-carbon nanotube and -graphene oxide hybrid nanostructures,” J. Phys. Chem. C114(25), 11258–11265 (2010). [CrossRef]
  31. J. Liu, H. Jeong, K. Lee, J. Y. Park, Y. H. Ahn, and S. Lee, “Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents,” Carbon48(8), 2282–2289 (2010). [CrossRef]
  32. M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett.93(23), 231905 (2008). [CrossRef]
  33. J. T. Hong, D. J. Park, J. Y. Moon, S. B. Choi, J. K. Park, R. Farbian, J. Y. Park, S. Lee, and Y. H. Ahn, “Terahertz wave applications of single-walled carbon nanotube films with high shielding effectiveness,” Appl. Phys. Express5(1), 015102 (2012). [CrossRef]
  34. M. A. Seo, J. W. Lee, and D. S. Kim, “Dielectric constant engineering with polymethylmethacrylate-graphite metastate composites in the terahertz region,” J. Appl. Phys.99(6), 066103 (2006). [CrossRef]
  35. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007). [CrossRef]
  36. N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett.93(5), 051105 (2008). [CrossRef]
  37. J. Horng, C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B83(16), 165113 (2011). [CrossRef]
  38. F. T. Vasko, V. V. Mitin, V. Ryzhii, and T. Otsuji, “Interplay of intra- and interband absorption in a disordered graphene,” Phys. Rev. B86(23), 235424 (2012). [CrossRef]
  39. S. Barrau, P. Demont, A. Peigney, C. Laurent, and C. Lacabanne, “Dc and ac conductivity of carbon nanotubes-polyepoxy composites,” Macromolecules36(14), 5187–5194 (2003). [CrossRef]
  40. H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” Appl. Phys. Lett.94(17), 172102 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited