OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7699–7711

Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals

Yan Li, Ying Wu, Xi Chen, and Jun Mei  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7699-7711 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1408 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a selection rule for Dirac-like points in two-dimensional dielectric photonic crystals. The rule is derived from a perturbation theory and states that a non-zero, mode-coupling integral between the degenerate Bloch states guarantees a Dirac-like point, regardless of the type of the degeneracy. In fact, the selection rule can also be determined from the symmetry of the Bloch states even without computing the integral. Thus, the existence of Dirac-like points can be quickly and conclusively predicted for various photonic crystals independent of wave polarization, lattice structure, and composition.

© 2013 OSA

OCIS Codes
(260.2030) Physical optics : Dispersion
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: January 4, 2013
Manuscript Accepted: March 5, 2013
Published: March 21, 2013

Yan Li, Ying Wu, Xi Chen, and Jun Mei, "Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals," Opt. Express 21, 7699-7711 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009). [CrossRef]
  2. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100(1), 013904 (2008). [CrossRef] [PubMed]
  3. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A78(3), 033834 (2008). [CrossRef]
  4. R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A75(6), 063813 (2007). [CrossRef]
  5. R. A. Sepkhanov and C. W. J. Beenakker, “Numerical test of the theory of pseudo-diffusive transmission at the Dirac point of a photonic band structure,” Opt. Commun.281(20), 5267–5270 (2008). [CrossRef]
  6. X. Zhang and Z. Liu, “Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals,” Phys. Rev. Lett.101(26), 264303 (2008). [CrossRef] [PubMed]
  7. X. Zhang, “Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal,” Phys. Rev. Lett.100(11), 113903 (2008). [CrossRef] [PubMed]
  8. Q. Liang, Y. Yan, and J. Dong, “Zitterbewegung in the honeycomb photonic lattice,” Opt. Lett.36(13), 2513–2515 (2011). [CrossRef] [PubMed]
  9. M. Diem, T. Koschny, and C. M. Soukoulis, “Transmission in the vicinity of the Dirac point in hexagonal photonic crystals,” Physica B405(14), 2990–2995 (2010). [CrossRef]
  10. O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett.98(10), 103901 (2007). [CrossRef] [PubMed]
  11. T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B80(15), 155103 (2009). [CrossRef]
  12. D. Torrent and J. Sánchez-Dehesa, “Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves,” Phys. Rev. Lett.108(17), 174301 (2012). [CrossRef] [PubMed]
  13. L.-G. Wang, Z.-G. Wang, and S.-Y. Zhu, “Zitterbewegung of optical pulses near the Dirac point inside a negative-zero-positive index metamaterial,” Europhys. Lett.86(4), 47008 (2009). [CrossRef]
  14. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10(8), 582–586 (2011). [CrossRef] [PubMed]
  15. F. M. Liu, X. Q. Huang, and C. T. Chan, “Dirac cones at k→=0in acoustic crystals and zero refractive index acoustic materials,” Appl. Phys. Lett.100(7), 071911 (2012). [CrossRef]
  16. F. M. Liu, Y. Lai, X. Q. Huang, and C. T. Chan, “Dirac cones atk→=0in photonic crystals,” Phys. Rev. B84(22), 224113 (2011). [CrossRef]
  17. J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B86(3), 035141 (2012). [CrossRef]
  18. K. Sakoda and H.-F. Zhou, “Role of structural electromagnetic resonances in a steerable left-handed antenna,” Opt. Express18(26), 27371–27386 (2010). [CrossRef] [PubMed]
  19. K. Sakoda, “Dirac cone in two- and three-dimensional metamaterials,” Opt. Express20(4), 3898–3917 (2012). [CrossRef] [PubMed]
  20. K. Sakoda, “Double Dirac cones in triangular-lattice metamaterials,” Opt. Express20(9), 9925–9939 (2012). [CrossRef] [PubMed]
  21. J. Mathews and R. L. Walker, Mathematical Methods of Physics, 2nd ed. (Addison-Wesley, 1970).
  22. P. M. Hui, W. M. Lee, and N. F. Johnson, “Theory of scalar wave propagation in periodic composites: ak→⋅p→, ” Solid State Commun.91(1), 65–69 (1994). [CrossRef]
  23. B. A. Foreman, “Theory of the effective Hamiltonian for degenerate bands in an electric field,” J. Phys. Condens. Matter12(34), R435–R461 (2000). [CrossRef]
  24. M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to the Physics of Condensed Matter (Springer-Verlag, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited