OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7811–7820

Tunable plasmon resonances and two-dimensional anisotropy of angular optical response of overlapped nanoshells

Tengfei Wu, Shaobo Yang, and Xingfei Li  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7811-7820 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4457 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Symmetry breaking of metallic nanoparticles results in many unique optical properties. We use the discrete dipole approximation method to study the optical properties of overlapped nanoshells which further break the rotational symmetry compared with the semishells. The optical properties of the nanoparticles can be tuned from the visible to near infrared regime by varying the geometry parameters and the hybrid components of nanoparticles. The calculated extinction spectra show the two-dimensional anisotropy of the angular optical response of the nanoparticles. The plasmon hybridization model provides a way to interpret the resonance modes of the nanoparticles. The tunable plasmon resonances, the enhanced local fields and the anisotropic optical properties suggest that the overlapped nanoshells have potential applications in surface-enhanced spectroscopy and “smart” coating in windows or display devices.

© 2013 OSA

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optics at Surfaces

Original Manuscript: January 22, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 15, 2013
Published: March 22, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Tengfei Wu, Shaobo Yang, and Xingfei Li, "Tunable plasmon resonances and two-dimensional anisotropy of angular optical response of overlapped nanoshells," Opt. Express 21, 7811-7820 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007). [CrossRef] [PubMed]
  2. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011). [CrossRef] [PubMed]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  4. S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998). [CrossRef]
  5. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  6. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006). [CrossRef] [PubMed]
  7. Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry Breaking in Gold-Silica-Gold Multilayer Nanoshells,” ACS Nano4(3), 1521–1528 (2010). [CrossRef] [PubMed]
  8. P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5(9), 6774–6778 (2011). [CrossRef] [PubMed]
  9. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010). [CrossRef] [PubMed]
  10. M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology18(23), 235704 (2007). [CrossRef]
  11. J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17(26), 23765–23771 (2009). [CrossRef] [PubMed]
  12. J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C113(8), 3110–3115 (2009). [CrossRef]
  13. X. Liu, N. C. Linn, C. H. Sun, and P. Jiang, “Templated fabrication of metal half-shells for surface-enhanced Raman scattering,” Phys. Chem. Chem. Phys.12(6), 1379–1387 (2010). [CrossRef] [PubMed]
  14. J. Ye, C. Chen, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Strong location dependent surface enhanced Raman scattering on individual gold semishell and nanobowl particles,” Phys. Chem. Chem. Phys.12(37), 11222–11224 (2010). [CrossRef] [PubMed]
  15. N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5(9), 7254–7262 (2011). [CrossRef] [PubMed]
  16. Y. Zhang, A. Barhoumi, J. B. Lassiter, and N. J. Halas, “Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles,” Nano Lett.11(4), 1838–1844 (2011). [CrossRef] [PubMed]
  17. N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano4(5), 2701–2712 (2010). [CrossRef] [PubMed]
  18. J. Qian, Z. Chen, J. Chen, Y. Li, J. Xu, and Q. Sun, “Two-dimensional angularly selective optical properties of gold nanoshell with holes,” Opt. Express20(13), 14614–14620 (2012). [CrossRef] [PubMed]
  19. Y. Yu, L. Gan, G. Zhang, and B. Yang, “Asymmetric microparticles and heterogeneous microshells via angled colloidal lithography,” Colloids Surf. A Physicochem. Eng. Asp.405(5), 51–58 (2012). [CrossRef]
  20. M. B. Cortie and A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev.111(6), 3713–3735 (2011). [CrossRef] [PubMed]
  21. G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys.103, 19–45 (2006). [CrossRef]
  22. J. H. Weaver and H. P. R. Frederikse, “Optical properties of selected elements,” in CRC Handbook of Chemistry and Physics, D. R. Lide, ed. (CRC Press, Boca Raton, Fla., 2001).
  23. M. B. Cortie, X. Xu, and M. J. Ford, “Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods,” Phys. Chem. Chem. Phys.8(30), 3520–3527 (2006). [CrossRef] [PubMed]
  24. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008). [CrossRef]
  25. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005). [CrossRef] [PubMed]
  26. R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem.81(11), 4531–4535 (2009). [CrossRef] [PubMed]
  27. B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kielyet, and L. M. Liz Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem.15(17), 1755–1759 (2005). [CrossRef]
  28. J. H. Kim, W. W. Bryan, and T. R. Lee, “Preparation, Characterization, and Optical Properties of Gold, Silver, and Gold-Silver Alloy Nanoshells Having Silica Cores,” Langmuir24(19), 11147–11152 (2008). [CrossRef] [PubMed]
  29. S. Link, Z. L. Wang, and M. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited