OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 7851–7857

Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system

Jacek Swiderski, Maria Michalska, and Gwenael Maze  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 7851-7857 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2230 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel method of mid-infrared (mid-IR) supercontinuum (SC) generation with the use of a 2 µm gain-switched self-mode-locked thulium-doped fiber laser. SC radiation ranging from ~1.9 to 3.8 µm wavelength, generated in a single-mode ZBLAN fiber with a zero-dispersion wavelength (ZDW) shifted to ~1.9 µm, is reported. An average output power of 0.74 W with 0.27 W at wavelengths longer than 2.4 µm was measured. It is, to the best of our knowledge, the first report on such an approach to generate a mid-IR SC in optical fibers.

© 2013 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: February 6, 2013
Revised Manuscript: March 4, 2013
Manuscript Accepted: March 5, 2013
Published: March 25, 2013

Jacek Swiderski, Maria Michalska, and Gwenael Maze, "Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system," Opt. Express 21, 7851-7857 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol.18(5), 349–374 (2012). [CrossRef]
  2. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express20(5), 4887–4892 (2012). [CrossRef] [PubMed]
  3. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92(3), 367–378 (2008). [CrossRef]
  4. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express14(12), 5715–5722 (2006). [CrossRef] [PubMed]
  5. U. Moller, S. T. Sorensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol.18(5), 304–314 (2012). [CrossRef]
  6. J. Swiderski and M. Maciejewska, “Watt-level, all-fiber supercontinuum source based on telecom-grade fiber components,” Appl. Phys. B109(1), 177–181 (2012). [CrossRef]
  7. J. Swiderski and M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett.10(3), 035105 (2013). [CrossRef]
  8. T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett.31(1), 33–35 (1977). [CrossRef]
  9. M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser,” Opt. Lett.37(11), 2127–2129 (2012). [CrossRef] [PubMed]
  10. D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(6), 061106 (2010). [CrossRef]
  11. R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol.18(5), 345–348 (2012). [CrossRef]
  12. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express20(22), 24218–24225 (2012). [CrossRef] [PubMed]
  13. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009). [CrossRef]
  14. T. M. Monro and H. Ebendorff-Heidepriem, “Progres in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006). [CrossRef]
  15. C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009). [CrossRef]
  16. M. Eckerle, C. Kieleck, J. Swiderski, S. D. Jackson, G. Mazé, and M. Eichhorn, “Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber,” Opt. Lett.37(4), 512–514 (2012). [CrossRef] [PubMed]
  17. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngso, C. L. Thomsen, J. Thogersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B29(4), 635–645 (2012). [CrossRef]
  18. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 microm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.31(17), 2553–2555 (2006). [CrossRef] [PubMed]
  19. C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express19(16), 14883–14891 (2011). [CrossRef] [PubMed]
  20. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett.32(13), 1797–1799 (2007). [CrossRef] [PubMed]
  21. C. Larsen, S. T. Sorensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun.290, 170–174 (2013). [CrossRef]
  22. J. Swiderski and M. Michalska, Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00–908 Warsaw, Poland, are preparing a manuscript to be called “Self-mode-locked, fast gain-switched thulium-doped fiber laser.”
  23. G. P. Agrawal, Nonlinear Fiber Optics 4th Edition (Academic Press, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited