OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 7858–7867

Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses

Mingying Sun, Urs Eppelt, Simone Russ, Claudia Hartmann, Christof Siebert, Jianqiang Zhu, and Wolfgang Schulz  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 7858-7867 (2013)
http://dx.doi.org/10.1364/OE.21.007858


View Full Text Article

Enhanced HTML    Acrobat PDF (1911 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

© 2013 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.2750) Materials : Glass and other amorphous materials
(320.5390) Ultrafast optics : Picosecond phenomena
(320.7090) Ultrafast optics : Ultrafast lasers
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Laser Microfabrication

History
Original Manuscript: November 13, 2012
Manuscript Accepted: February 28, 2013
Published: March 25, 2013

Citation
Mingying Sun, Urs Eppelt, Simone Russ, Claudia Hartmann, Christof Siebert, Jianqiang Zhu, and Wolfgang Schulz, "Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses," Opt. Express 21, 7858-7867 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-7858


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  2. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009). [CrossRef]
  3. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002). [CrossRef] [PubMed]
  4. Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19(7), 6807–6821 (2011). [CrossRef] [PubMed]
  5. L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13(6), 1999–2006 (2005). [CrossRef] [PubMed]
  6. A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D Appl. Phys.40(5), 1447–1459 (2007). [CrossRef]
  7. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.65(4-5), 367–373 (1997). [CrossRef]
  8. L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D Appl. Phys.37(10), 1492–1496 (2004). [CrossRef]
  9. J. R. Vázquez de Aldana, C. Méndez, L. Roso, and P. Moreno, “Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments,” J. Phys. D Appl. Phys.38, 3764 (2005).
  10. J. R. Vázquez de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express14(3), 1329–1338 (2006). [CrossRef] [PubMed]
  11. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007). [CrossRef]
  12. D. G. Papazoglou and S. Tzortzakis, “Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation,” Opt. Mater. Express1(4), 625–632 (2011). [CrossRef]
  13. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interaction with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004). [CrossRef]
  14. K. I. Popov, C. McElcheran, K. Briggs, S. Mack, and L. Ramunno, “Morphology of femtosecond laser modification of bulk dielectrics,” Opt. Express19(1), 271–282 (2011). [CrossRef] [PubMed]
  15. D. Arnold, E. Cartier, and D. J. DiMaria, “Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide,” Phys. Rev. B Condens. Matter45(3), 1477–1480 (1992). [CrossRef] [PubMed]
  16. J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, and R. Stoian, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A85(1), 013808 (2012). [CrossRef]
  17. EAGLE XG® Material Information Sheet. http://www.corning.com/displaytechnologies/en/products/eaglexg/index.aspx .
  18. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005). [CrossRef]
  19. P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I—Theory,” IEEE J. Quantum Electron.31(12), 2241–2249 (1995). [CrossRef]
  20. Y. Wang, Y. Zhao, J. Shao, and Z. Fan, “Effect of native effect and laser-induced defects on multi-shot laser-induced damage in multilayer mirrors,” Chin. Opt. Lett.9(9), 093102–093105 (2011). [CrossRef]
  21. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP20, 1307–1314 (1965).
  22. S. Quan, J. Hong-Bing, L. Yi, Z. Yong-Heng, Y. Hong, and G. Qi-Huang, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006). [CrossRef]
  23. Types of Glass. http://www.cmog.org/article/types-glass .
  24. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi15(2), 627–637 (1966). [CrossRef]
  25. D. Ashkenasi and A. Lemke, “Picosecond laser-induced color centers in glass optics,” J. Laser Appl.23(1), 012007 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited