OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 7882–7890

Colloidal quantum dot-based plasmon emitters with planar integration and long-range guiding

Masashi Miyata and Junichi Takahara  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 7882-7890 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4417 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental demonstration of a quantum dot (QD)-based plasmon emitter controllably integrated in designed patterns on a thin metal film. The generation of surface plasmons polaritons (SPPs) from optically excited QDs on a thin metal film is experimentally demonstrated. Long-range, low-dispersion, two-dimensional isotropic guiding, as well as efficient coupling of the SPPs are also shown. The realization of planar, low loss and efficient plasmon emitter-waveguide integration will offer further development of plasmon circuits.

© 2013 OSA

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: December 21, 2012
Revised Manuscript: February 1, 2013
Manuscript Accepted: March 14, 2013
Published: March 25, 2013

Masashi Miyata and Junichi Takahara, "Colloidal quantum dot-based plasmon emitters with planar integration and long-range guiding," Opt. Express 21, 7882-7890 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one dimensional optical beam with nanometer diameter,” Opt. Lett.22, 475–477 (1997). [CrossRef] [PubMed]
  2. J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photonics News15, 54–59 (2004). [CrossRef]
  3. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).
  4. D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett.12, 359–363 (2012). [CrossRef]
  5. M. Miyata and J. Takahara, “Field enhancement by longitudinal compression of plasmonic slow light,” J. Appl. Phys.111, 053102 (2012). [CrossRef]
  6. M. Miyata and J. Takahara, “Excitation control of long-range surface plasmons by two incident beams,” Opt. Express20, 9493–9500 (2012). [CrossRef] [PubMed]
  7. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys98, 043109 (2005). [CrossRef]
  8. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics2, 496–500 (2008). [CrossRef]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. -Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonantors,” Nature440, 508–511 (2006). [CrossRef] [PubMed]
  10. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011. [CrossRef]
  11. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. -M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009). [CrossRef] [PubMed]
  12. R. -M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10, 110–113 (2010). [CrossRef] [PubMed]
  13. P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics3, 283–286 (2009). [CrossRef]
  14. P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys.103, 113114 (2007). [CrossRef]
  15. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2008). [CrossRef]
  16. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4, 382–387 (2010). [CrossRef]
  17. D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010). [CrossRef]
  18. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008). [CrossRef]
  19. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008). [CrossRef]
  20. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010). [CrossRef]
  21. A. Ueda, T. Tayagaki, and Y. Kanemitsu, “Energy transfer from semiconductor nanocrystal monolayers to metal surfaces revealed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.92, 133118 (2008). [CrossRef]
  22. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]
  23. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007). [CrossRef] [PubMed]
  24. C. Gruber, P. Kusar, A. Hohenau, and J. R. Krenn, “Controlled addressing of quantum dots by nanowire plasmons,” Appl. Phys. Lett.100, 231102 (2012). [CrossRef]
  25. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10, 4851–4857 (2010). [CrossRef]
  26. P. Fan, C. Colombo, K. C. Y. Huang, P. Krogstrup, J. Nygård, A. F. i Morral, and M. L. Brongersma, “An Electrically-Driven GaAs Nanowire Surface Plasmon Source,” Nano Lett.12, 4943–4947 (2012). [CrossRef] [PubMed]
  27. Y. Masuda, T. Itoh, and K. Koumoto, “Self-assembly patterning of silica colloidal crystals,” Langmuir21, 4478–4481 (2005). [CrossRef] [PubMed]
  28. H. Wei, D. Ratchford, X. E. Li, H. Xu, and C. -K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9, 4168–4171 (2009). [CrossRef] [PubMed]
  29. J. Takahara and T. Kobayashi, “Nano-optical waveguides breaking through diffraction limit of light,” Proc. SPIE5604, 158–172 (2004). [CrossRef]
  30. M. Fukui, V. -C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status SolidiB91, K61 (1979). [CrossRef]
  31. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009). [CrossRef]
  32. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007). [CrossRef]
  33. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett.35, 1197–1199 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited