OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 7897–7907

Spontaneous emission in paired graphene plasmonic waveguide structures

Lei Zhang, Xiuli Fu, Mei Zhang, and Junzhong Yang  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 7897-7907 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2329 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The coupling between a single emitter and surface plasmons in paired graphene layers and in paired graphene ribbons are studied. For paired graphene layers, the coupling between surface plasmons in graphene layers is strong at low photon energy and small gap between layers, which results in strong enhancement of the emitter’s emission. The excitation efficiency of surface plasmons by a single emitter can be increased to nearly 1 in paired graphene layers. With the increase of the photon energy, emitter’s emission in paired layers is weakened and could be lower than that in graphene monolayer. For graphene paired ribbons, numerical simulations show similar properties of emission enhancement and high excitation efficiency of surface plasmons. The emission enhancement and the excitation efficiency of surface plasmons can be improved by narrowing the ribbon width.

© 2013 OSA

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: January 24, 2013
Revised Manuscript: March 9, 2013
Manuscript Accepted: March 10, 2013
Published: March 25, 2013

Lei Zhang, Xiuli Fu, Mei Zhang, and Junzhong Yang, "Spontaneous emission in paired graphene plasmonic waveguide structures," Opt. Express 21, 7897-7907 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010). [CrossRef]
  2. D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002 (2006). [CrossRef] [PubMed]
  3. A. K. Ekert, “Quantum cryptography based on Bell s theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
  4. H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998). [CrossRef]
  5. K. M. Svore, B. M. Terhal, and D. P. DiVincenzo, “Local fault-tolerant quantum computation,” Phys. Rev. A72, 022317 (2005). [CrossRef]
  6. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interaction,” Nano Lett.11, 3370–3377 (2011). [CrossRef] [PubMed]
  7. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. H. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008). [CrossRef]
  8. D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett.105, 256805 (2010). [CrossRef]
  9. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009). [CrossRef]
  10. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011). [CrossRef]
  11. C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B85, 125431 (2012). [CrossRef]
  12. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS. Nano. 6, 431–440 (2012). [CrossRef]
  13. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B84, 195446 (2011). [CrossRef]
  14. Y. C. Jun, R.D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B78, 153111 (2008). [CrossRef]
  15. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195–287 (1984). [CrossRef]
  16. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006). [CrossRef]
  17. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New. J. Phys.8, 318 (2006). [CrossRef]
  18. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007). [CrossRef]
  19. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004). [CrossRef] [PubMed]
  20. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438, 197–200 (2005). [CrossRef] [PubMed]
  21. S. Thongrattanasiri, A. Manjavacas, and F. Javier García de Abajo, “Quantum Finite-Size Effects in Graphene Plasmons,” ACS Nano6, 1766–1775 (2012). [CrossRef] [PubMed]
  22. S. Thongrattanasiri, Iván Silveiro, and F. Javier García de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett.100, 201105 (2012). [CrossRef]
  23. A. Manjavacas, S. Thongrattanasiri, D. E. Chang, and F. J. García de Abajo, “Temporal quantum control with graphene,” New. J. Phys.14, 123020 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited