OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 7908–7915

Control of laser filamentation in fused silica by a periodic microlens array

Acner Camino, Zuoqiang Hao, Xu Liu, and Jingquan Lin  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 7908-7915 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2040 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Deterministic wavelength-dependent multifilamentation is controlled in fused silica by adjusting the diffraction pattern generated by a loosely focusing 2D periodic lens array. By simply translating the sample along the propagation axis the number and distribution of filaments can be controlled and are in agreement with the results of linear diffraction simulations. The loose focusing geometry allows for long filaments whose distribution is conserved along their propagation inside the sample. The effect of incident energy and polarization on filament number is also studied. Laser filamentation controlled by a microlens array could be a promising method for easy and fast 3D track writing in transparent materials.

© 2013 OSA

OCIS Codes
(110.5100) Imaging systems : Phased-array imaging systems
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Nonlinear Optics

Original Manuscript: January 28, 2013
Revised Manuscript: March 9, 2013
Manuscript Accepted: March 11, 2013
Published: March 25, 2013

Acner Camino, Zuoqiang Hao, Xu Liu, and Jingquan Lin, "Control of laser filamentation in fused silica by a periodic microlens array," Opt. Express 21, 7908-7915 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett.20(1), 73–75 (1995). [CrossRef] [PubMed]
  2. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett.22(5), 304–306 (1997). [CrossRef] [PubMed]
  3. M. Chateauneuf, S. Payeur, J. Dubois, and J.-C. Kieffer, “Microwave guiding in air by a cylindrical filament array waveguide,” Appl. Phys. Lett.92(9), 091104 (2008). [CrossRef]
  4. M. Alshershby, Z. Q. Hao, and J. Q. Lin, “Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept,” J. Phys. D Appl. Phys.45(26), 265401 (2012). [CrossRef]
  5. M. Alshershby, J. Q. Lin, and Z. Q. Hao, “Numerical analysis of guiding a microwave radiation using a set of plasma filaments: dielectric waveguide concept,” J. Phys. D Appl. Phys.45(6), 065102 (2012). [CrossRef]
  6. B. La Fontaine, D. Comtois, C.-Y. Chien, A. Desparois, F. Génin, G. Jarry, T. Johnston, J.-C. Kieffer, F. Martin, R. Mawassi, H. Pépin, F. A. M. Rizk, F. Vidal, C. Potvin, P. Couture, and H. P. Mercure, “Guiding large-scale spark discharges with ultrashort pulse laser filaments,” J. Appl. Phys.88(2), 610–615 (2000). [CrossRef]
  7. N. L. Alexandrov, E. M. Bazeljan, N. A. Bogatov, A. M. Kiselev, A. N. Stepanov, B. A. Tikhomirov, and A. B. Tikhomirov, “Nonlinear effects of propagation of intense femtosecond laser radiation in atmosphere,” Proc. Int. Conf. on ‘High-power laser beams’ HPLB-2006 (N. Novgorod-Yaroslavl, 3–8 July) 107, (2006).
  8. A. Saliminia, N. T. Nguyen, M.-C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys.93(7), 3724 (2003). [CrossRef]
  9. H. Chen, X. Chen, Y. Xia, D. Liu, Y. Li, and Q. Gong, “Beam coupling in 2×2 waveguide arrays in fused silica fabricated by femtosecond laser pulses,” Opt. Express15(9), 5445–5450 (2007). [CrossRef] [PubMed]
  10. Y. Wang, Y. H. Li, and P. Lu, “Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in fused silica,” Chin. Phys. Lett.27(4), 044213 (2010). [CrossRef]
  11. O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun.267(2), 511–523 (2006). [CrossRef]
  12. L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13(6), 1999–2006 (2005). [CrossRef] [PubMed]
  13. V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, “Birefringent modifications induced by femtosecond filaments in optical glass,” Appl. Phys., A Mater. Sci. Process.93(2), 571–576 (2008). [CrossRef]
  14. K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett.26(1), 19–21 (2001). [CrossRef] [PubMed]
  15. A. Dubietis, G. Tamosauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett.29(10), 1126–1128 (2004). [CrossRef] [PubMed]
  16. D. Majus, V. Jukna, G. Valiulis, and A. Dubietis, “Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams,” Phys. Rev. A79(3), 033843 (2009). [CrossRef]
  17. Z. Q. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express19(8), 7799–7806 (2011). [CrossRef] [PubMed]
  18. C. Corsi, A. Tortora, and M. Bellini, “Generation of a variable linear array of phase-coherent supercontinuum sources,” Appl. Phys. B78(3–4), 299–304 (2004). [CrossRef]
  19. J. P. Bérubé, R. Vallée, M. Bernier, O. Kosareva, N. Panov, V. Kandidov, and S. L. Chin, “Self and forced periodic arrangement of multiple filaments in glass,” Opt. Express18(3), 1801–1819 (2010). [CrossRef] [PubMed]
  20. P. Rohwetter, M. Queißer, K. Stelmaszczyk, M. Fechner, and L. Wöste, “Laser multiple filamentation control in air using a smooth phase mask,” Phys. Rev. A77(1), 013812 (2008). [CrossRef]
  21. V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, “Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse,” Appl. Phys. B80(2), 267–275 (2005). [CrossRef]
  22. H. Schroeder, J. Liu, and S. L. Chin, “From random to controlled small-scale filamentation in water,” Opt. Express12(20), 4768–4774 (2004). [CrossRef] [PubMed]
  23. J. Liu, R. Li, Z. Xu, H. Schroder, and S. L. Chin, “Control and organization of multi-filamentation of femtosecond laser pulses in optical media,” J. Korean Phys. Soc.51(94), 1572–1577 (2007). [CrossRef]
  24. S. Minardi, A. Varanavicius, P. Di Trapani, and A. Piskarskas, “A compact, multipixel parametric light source,” Opt. Commun.224(4-6), 301–307 (2003). [CrossRef]
  25. W. Watanabe, Y. Masuda, H. Arimoto, and K. Itoh, “Coherent Array of White-Light Continuum Generated by Microlens Array,” Opt. Rev.6(3), 167–172 (1999). [CrossRef]
  26. K. Cook, R. McGeorge, A. K. Kar, M. R. Taghizadeh, and R. A. Lamb, “Coherent array of white-light continuum filaments produced by diffractive microlenses,” Appl. Phys. Lett.86(2), 021105 (2005). [CrossRef]
  27. M. Taghizadeh, P. Blair, K. Balluder, A. Waddie, P. Rudman, and N. Ross, “Design and fabrication of diffractive elements for laser material processing applications,” Opt. Lasers Eng.34(4-6), 289–307 (2000). [CrossRef]
  28. M. Berry, I. Marzoli, and W. Schleich, “Quantum carpets, carpets of light,” Phys. World 39–46, (June 2001).
  29. G. Fibich and B. Ilan, “Multiple filamentation of circularly polarized beams,” Phys. Rev. Lett.89(1), 013901 (2002). [CrossRef] [PubMed]
  30. A. Saliminia, J. P. Bérubé, and R. Vallée, “Refractive index-modified structures in glass written by 266nm fs laser pulses,” Opt. Express20(25), 27410–27419 (2012). [CrossRef] [PubMed]
  31. D. Papazoglou, I. Zergioti, S. G. Sgouros, G. Maravelias, S. Christopoulos, and C. Fotakis, “Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica,” Appl. Phys., A Mater. Sci. Process.81(2), 241–244 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited