OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 7926–7933

Phase-sensitive amplification of light in a χ(3) photonic chip using a dispersion engineered chalcogenide ridge waveguide

Richard Neo, Jochen Schröder, Yvan Paquot, Duk-Yong Choi, Steve Madden, Barry Luther-Davies, and Benjamin J. Eggleton  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 7926-7933 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1009 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report phase-sensitive amplification of light using χ(3) parametric processes in a chalcogenide ridge waveguide. By spectrally slicing pump, signal and idler waves from a single pulsed source, we are able to observe 9.9 dB of on-chip phase-sensitive extinction with a signal-degenerate dual pump four-wave mixing architecture in good agreement with numerical simulations.

© 2013 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

Original Manuscript: January 30, 2013
Revised Manuscript: March 16, 2013
Manuscript Accepted: March 17, 2013
Published: March 25, 2013

Richard Neo, Jochen Schröder, Yvan Paquot, Duk-Yong Choi, Steve Madden, Barry Luther-Davies, and Benjamin J. Eggleton, "Phase-sensitive amplification of light in a χ(3) photonic chip using a dispersion engineered chalcogenide ridge waveguide," Opt. Express 21, 7926-7933 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Lundström, Z. Tong, M. Karlsson, and P. A. Andrekson, “Phase-to-phase and phase-to-amplitude transfer characteristics of a nondegenerate-idler phase-sensitive amplifier,” Opt. Lett.36(22), 4356–4358 (2011). [CrossRef] [PubMed]
  2. C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express20(19), 21400–21412 (2012). [CrossRef] [PubMed]
  3. R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010). [CrossRef]
  4. J. Schröder, T. D. Vo, and B. J. Eggleton, “Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz.” Opt. Lett.34, 3902–3904 (2009). [CrossRef] [PubMed]
  5. B. J. Eggleton, T.D. Vo, R. Pant, J. Schröder, M. D. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev.6(1), 97–114 (2012). [CrossRef]
  6. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D Part. Fields26(8), 1817–1839 (1982). [CrossRef]
  7. The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys.7(12), 962–965 (2011).
  8. C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express13(22), 9131–9142 (2005). [CrossRef] [PubMed]
  9. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in photonic crystal fiber,” Phys. Rev. Lett.105(9), 093604 (2010). [CrossRef] [PubMed]
  10. J. Kakande, A. Bogris, R. Slavik, F. Parmigiani, D. Syvridis, P. Petropoulos, and D. J. Richardson, “First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier,” in European Conference on Optical Communication ECOC, (Turin, 2010), paper PDP 3.3.
  11. K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett.19(11), 864–866 (2007). [CrossRef]
  12. T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett.19(9), 650–652 (2007). [CrossRef]
  13. J. Kakande, R. Slavik, F. Parmigiani, A. Bogris, D. Syvridis, L. Grüner-Nielsen, R.P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011). [CrossRef]
  14. K. J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. J. Richardson, “Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express17(22), 20393–20400 (2009). [CrossRef] [PubMed]
  15. B. J. Puttnam, D. Mazroa, S. Shinada, and N. Wada, “Phase-squeezing properties of non-degenerate PSAs using PPLN waveguides,” Opt. Express19(26), B131–B139 (2011). [CrossRef]
  16. A. Szabo, B. J. Puttnam, D. Mazroa, S. Shinada, and N. Wada, “Investigation of an all-optical black-box PPLN-PPLN BPSK phase regenerator,” IEEE Photon. Technol. Lett.24(22), 2087–2089 (2012). [CrossRef]
  17. U. Takeshi, H. Takenouchi, and M. Asobe, “First demonstration of in-line phase sensitive amplifier based on PPLN waveguide,” in ECOC (Amsterdam, 2012), conference paper Tu.3.E.1.
  18. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  19. B. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5(3), 141–148 (2011).
  20. M. R. E. Lamont, C. M. de Sterke, and B. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express15(15), 9458–9463 (2007). [CrossRef] [PubMed]
  21. C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express12(20), 4973–4979 (2004). [CrossRef] [PubMed]
  22. J. Fan and A. Migdall, “Phase-sensitive four-wave mixing and Raman suppression in a microstructure fiber with dual laser pumps,” Opt. Lett.31(18), 2771–2773 (2006). [CrossRef] [PubMed]
  23. K. A. Croussore and G. Li, “Phase regeneration of DPSK signals based on symmetric-pump phase-sensitive amplification in bismuth oxide highly nonlinear fiber,” in Conference on Lasers and Electro-Optics CLEO, (2007), paper CMZ4.
  24. M. A. Ettabib, F. Parmigiani, X. Feng, L. Jones, J. Kakande, R. Slavik, F. Poletti, G. M. Ponzo, J. Shi, M. N. Petrovich, W. H. Loh, P. Petropoulos, and D. J. Richardson, “Phase regeneration of DPSK signals in a highly nonlinear lead-silicate W-type fiber,” Opt. Express20(24), 27419–27424 (2012). [CrossRef] [PubMed]
  25. P. Frascella, S. Sygletos, F. C. Garcia Gunning, R. Weerasuriya, L. Grüner-Nielson, R. Phelan, J. O’Gorman, and A. D. Ellis, “DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier,” IEEE Photon. Technol. Lett.23(8), 516–518(2011). [CrossRef]
  26. R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express13(26), 10483–10493(2005). [CrossRef] [PubMed]
  27. J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express18(5), 4130–4137(2010). [CrossRef] [PubMed]
  28. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol.26(1), 73–78 (2008). [CrossRef]
  29. M. Gao, T. Inoue, T. Kuroso, and S. Namiki, “Evolution of the gain extinction ratio in dual-pump phase sensitive amplification,” Opt. Lett.37(9), 1439–1441 (2012). [CrossRef] [PubMed]
  30. T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett.36(5), 710–712 (2011). [CrossRef] [PubMed]
  31. N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature478(7369), 360–363 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited