OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 7934–7942

Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna

Jing Yang and Jiasen Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 7934-7942 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2108 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a nano-polarization-converter made of a resonant L-shaped slot antenna in a gold film and study its optical properties using the finite-difference time-domain method. Phase retardation between the fast and slow axes of the nano-polarization-converter originates from the simultaneous excitation of both single-surface first-order magnetic plasmon resonance mode and second-order magnetic plasmon resonance mode at the working wavelength. By adjusting the size of the slot antenna, which is still much smaller than the wavelength, the working wavelength can be tuned within a large wavelength range.

© 2013 OSA

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

Original Manuscript: January 30, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 15, 2013
Published: March 25, 2013

Jing Yang and Jiasen Zhang, "Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna," Opt. Express 21, 7934-7942 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers,” Opt. Express14(21), 9988–9999 (2006). [CrossRef] [PubMed]
  5. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003). [CrossRef]
  6. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  7. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005). [CrossRef]
  8. A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B73(15), 155404 (2006). [CrossRef]
  9. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bow-tie”nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004). [CrossRef]
  10. L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett.6(3), 361–364 (2006). [CrossRef] [PubMed]
  11. C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007). [CrossRef]
  12. L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett.95(20), 201116 (2009). [CrossRef]
  13. S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057601 (2010). [CrossRef] [PubMed]
  14. J. Yang and J. S. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics6(2), 251–254 (2011). [CrossRef]
  15. T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008). [CrossRef]
  16. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010). [CrossRef]
  17. P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102(25), 256801 (2009). [CrossRef] [PubMed]
  18. P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B80(15), 153409 (2009). [CrossRef]
  19. E. Öğüt and K. Sendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett.96(14), 141104 (2010). [CrossRef]
  20. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008). [CrossRef] [PubMed]
  21. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett.36(13), 2498–2500 (2011). [CrossRef] [PubMed]
  22. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37(11), 1820–1822 (2012). [CrossRef] [PubMed]
  23. Z. H. Zhu, C. C. Guo, K. Liu, W. M. Ye, X. D. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett.37(4), 698–700 (2012). [CrossRef] [PubMed]
  24. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).
  25. A. Yu Nikitin, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B78(16), 165429 (2008).
  26. S.-H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express13(8), 3150–3165 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited