OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 7943–7950

1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler

Rose Mary, Graeme Brown, Stephen J. Beecher, Felice Torrisi, Silvia Milana, Daniel Popa, Tawfique Hasan, Zhipei Sun, Elefterios Lidorikis, Seiki Ohara, Andrea C. Ferrari, and Ajoy K. Kar  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 7943-7950 (2013)
http://dx.doi.org/10.1364/OE.21.007943


View Full Text Article

Enhanced HTML    Acrobat PDF (1573 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricate a saturable absorber mirror by coating a graphene- film on an output coupler mirror. This is then used to obtain Q-switched mode-locking from a diode-pumped linear cavity channel waveguide laser inscribed in Ytterbium-doped Bismuthate Glass. The laser produces 1.06 ps pulses at ~1039 nm, with a 1.5 GHz repetition rate, 48% slope efficiency and 202 mW average output power. This performance is due to the combination of the graphene saturable absorber and the high quality optical waveguides in the laser glass.

© 2013 OSA

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.4330) Materials : Nonlinear optical materials
(230.7380) Optical devices : Waveguides, channeled
(140.3615) Lasers and laser optics : Lasers, ytterbium
(160.4236) Materials : Nanomaterials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 7, 2013
Revised Manuscript: March 10, 2013
Manuscript Accepted: March 13, 2013
Published: March 25, 2013

Citation
Rose Mary, Graeme Brown, Stephen J. Beecher, Felice Torrisi, Silvia Milana, Daniel Popa, Tawfique Hasan, Zhipei Sun, Elefterios Lidorikis, Seiki Ohara, Andrea C. Ferrari, and Ajoy K. Kar, "1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler," Opt. Express 21, 7943-7950 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-7943


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009). [CrossRef]
  2. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  3. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012). [CrossRef]
  4. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011). [CrossRef]
  5. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012). [CrossRef]
  6. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010). [CrossRef] [PubMed]
  7. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010). [CrossRef]
  8. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012). [CrossRef] [PubMed]
  9. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett.37(11), 2085–2087 (2012). [CrossRef] [PubMed]
  10. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010). [CrossRef] [PubMed]
  11. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010). [CrossRef]
  12. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008). [CrossRef] [PubMed]
  13. G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett.89(23), 231115 (2006). [CrossRef]
  14. S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97(11), 111114 (2010). [CrossRef]
  15. A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm Solid-State Laser Mode-locked By Single-Layer Graphene,” Appl. Phys. Lett.102(1), 013113 (2013). [CrossRef]
  16. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15(12), 564–589 (2012). [CrossRef]
  17. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004). [CrossRef]
  18. U. Keller and E. Wolf, Progress in Optics (Elsevier, 2004).
  19. D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” arXiv:1209.5729 (2012).
  20. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B16(1), 46–56 (1999). [CrossRef]
  21. R. W. Boyd, Nonlinear Optics (AP, 2008).
  22. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics2(10), 557–572 (2009). [CrossRef] [PubMed]
  23. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B14(10), 2716–2722 (1997). [CrossRef]
  24. J. Mertz, “Nonlinear microscopy: new techniques and applications,” Curr. Opin. Neurobiol.14(5), 610–616 (2004). [CrossRef] [PubMed]
  25. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B27(11), B51–B62 (2010). [CrossRef]
  26. M. P. Moreno and S. S. Vianna, “Femtosecond 1 GHz Ti:sapphire laser as a tool for coherent spectroscopy in atomic vapor,” J. Opt. Soc. Am. B28(9), 2066–2069 (2011). [CrossRef]
  27. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009). [CrossRef]
  28. A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett.37(21), 4416–4418 (2012). [CrossRef] [PubMed]
  29. A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011). [CrossRef]
  30. H. Yu, X. Chen, H. Zhang, X. Xu, X. Hu, Z. Wang, J. Wang, S. Zhuang, and M. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ACS Nano4(12), 7582–7586 (2010). [CrossRef] [PubMed]
  31. J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 µm passive mode-locking Tm:YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012). [CrossRef]
  32. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19(16), 2577–2583 (2009). [CrossRef]
  33. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008). [CrossRef] [PubMed]
  34. T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A. C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B247(11-12), 2953–2957 (2010). [CrossRef]
  35. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006). [CrossRef] [PubMed]
  36. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000). [CrossRef]
  37. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett.9(4), 1433–1441 (2009). [CrossRef] [PubMed]
  38. A. C. Ferrari and J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon,” Phys. Rev. B64(7), 075414 (2001). [CrossRef]
  39. S. Latil, V. Meunier, and L. Henrard, “Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints,” Phys. Rev. B76(20), 201402 (2007). [CrossRef]
  40. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008). [CrossRef] [PubMed]
  41. D. M. Basko, S. Piscanec, and A. C. Ferrari, “Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene,” Phys. Rev. B80(16), 165413 (2009). [CrossRef]
  42. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009). [CrossRef] [PubMed]
  43. V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81(15), 155413 (2010). [CrossRef]
  44. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101(19), 196405 (2008). [CrossRef] [PubMed]
  45. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4(7), 532–535 (2008). [CrossRef]
  46. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B79(3), 331–339 (2004). [CrossRef]
  47. W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett.36(20), 4089–4091 (2011). [CrossRef] [PubMed]
  48. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett.30(7), 723–725 (2005). [CrossRef] [PubMed]
  49. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett.37(10), 1691–1693 (2012). [CrossRef] [PubMed]
  50. M. Bass and E. W. Van Stryland, Fiber Optics Handbook: Fiber, Devices, and Systems for Optical Communications (McGraw-Hill, 2002).
  51. D. V. Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited