OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 7957–7973

Comparison of electric field enhancements: Linear and triangular oligomers versus hexagonal arrays of plasmonic nanospheres

Salvatore Campione, Sarah M. Adams, Regina Ragan, and Filippo Capolino  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 7957-7973 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate local electromagnetic field enhancements in oligomers of plasmonic nanospheres. We first evaluate via full-wave simulations the field between spheres in several oligomer systems: linear dimers, linear trimers, trimers 60°, trimers 90° and linear quadrumers. To gain a better understanding of the field enhancement values, we compare the results with local fields in a hexagonal close-packed (HCP) configuration with same structural dimensions. We then inter-relate the field enhancement values found via full-wave simulations to SERS enhancements of actual fabricated self-assembled oligomers. We find that linear oligomers provide the largest field enhancement values. Finally, we provide closed-form formulas for the prediction of the resonance frequency responsible for field enhancement in linear oligomers, namely dimers, trimers and quadrumers, modeling each nanosphere as a single electric dipole. These formulas provide with resonance values less than 7% shifted when compared to full-wave results even when the gap between spheres is only about one fifth of the radius, showing the powerfulness of dipolar approximations. The results shown in this paper demonstrate that ad hoc clusters of nanospheres can be designed and fabricated to obtain larger field enhancements than with the HCP structure and this may pave the way for the development of improved sensors for molecular spectroscopy.

© 2013 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: February 1, 2013
Revised Manuscript: March 7, 2013
Manuscript Accepted: March 13, 2013
Published: March 26, 2013

Salvatore Campione, Sarah M. Adams, Regina Ragan, and Filippo Capolino, "Comparison of electric field enhancements: Linear and triangular oligomers versus hexagonal arrays of plasmonic nanospheres," Opt. Express 21, 7957-7973 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(1), 016607 (2011). [CrossRef] [PubMed]
  2. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004). [CrossRef]
  3. A. J. Haes and R. P. V. Duyne, “Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics,” Expert Rev. Mol. Diagn.4(4), 527–537 (2004). [CrossRef] [PubMed]
  4. K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem.390(1), 113–124 (2008). [CrossRef] [PubMed]
  5. L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kall, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett.78(6), 802–804 (2001). [CrossRef]
  6. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant Field Enhancements from Metal Nanoparticle Arrays,” Nano Lett.4(1), 153–158 (2004). [CrossRef]
  7. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004). [CrossRef] [PubMed]
  8. K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006). [CrossRef] [PubMed]
  9. D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon Modes of Nanosphere Trimers and Quadrumers,” J. Phys. Chem. B110(25), 12302–12310 (2006). [CrossRef] [PubMed]
  10. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett.5(8), 1569–1574 (2005). [CrossRef] [PubMed]
  11. T. Vo-Dinh, “Surface-enhanced Raman spectroscopy using metallic nanostructures,” TRAC-Trend. Anal. Chem.17, 557–582 (1998).
  12. K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res.39(7), 443–450 (2006). [CrossRef] [PubMed]
  13. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.- Condes. Matter14(18), R597–R624 (2002). [CrossRef]
  14. J. Mock, S. Norton, S. Y. Chen, A. Lazarides, and D. Smith, “Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles,” Plasmonics6(1), 113–124 (2011). [CrossRef]
  15. O. Rabin and S. Y. Lee, “SERS Substrates by the Assembly of Silver Nanocubes: High-Throughput and Enhancement Reliability Considerations,” J. Nanotechnol.2012, 870378 (2012). [CrossRef]
  16. A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Engineering Photonic-Plasmonic Coupling in Metal Nanoparticle Necklaces,” ACS Nano5(8), 6578–6585 (2011). [CrossRef] [PubMed]
  17. A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, and J. Z. Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B108(50), 19191–19197 (2004). [CrossRef]
  18. B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing Gold Nanoparticle Cluster Configurations (n ≤ 7) for Array Applications,” J Phys Chem C Nanomater Interfaces115(11), 4578–4583 (2011). [CrossRef] [PubMed]
  19. B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays,” ACS Nano3(5), 1190–1202 (2009). [CrossRef] [PubMed]
  20. G. V. P. Kumar, “Plasmonic nano-architectures for surface enhanced Raman scattering: a review,” J. Nanophoton.6(1), 064503–064520 (2012). [CrossRef]
  21. X. Gong, Y. Bao, C. Qiu, and C. Y. Jiang, “Individual nanostructured materials: fabrication and surface-enhanced Raman scattering,” Chem. Commun. (Camb.)48(56), 7003–7018 (2012). [CrossRef] [PubMed]
  22. B. Gao, Y. Alvi, D. Rosen, M. Lav, and A. R. Tao, “Designer nanojunctions: orienting shaped nanoparticles within polymer thin-film nanocomposites,” Chem. Commun. (Camb.) (2013), doi:. [CrossRef] [PubMed]
  23. S. M. Adams, S. Campione, J. D. Caldwell, F. J. Bezares, J. C. Culbertson, F. Capolino, and R. Ragan, “Non-lithographic SERS Substrates: Tailoring Surface Chemistry for Au Nanoparticle Cluster Assembly,” Small8(14), 2239–2249 (2012). [CrossRef] [PubMed]
  24. L. Brown, T. Koerner, J. H. Horton, and R. D. Oleschuk, “Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents,” Lab Chip6(1), 66–73 (2006). [CrossRef] [PubMed]
  25. J. H. Choi, S. M. Adams, and R. Ragan, “Design of a versatile chemical assembly method for patterning colloidal nanoparticles,” Nanotechnology20(6), 065301 (2009). [CrossRef] [PubMed]
  26. T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford, and T. P. Russell, “The influence of molecular weight on nanoporous polymer films,” Polymer (Guildf.)42(21), 9091–9095 (2001). [CrossRef]
  27. R. A. Segalman, A. Hexemer, and E. J. Kramer, “Effects of Lateral Confinement on Order in Spherical Domain Block Copolymer Thin Films,” Macromolecules36(18), 6831–6839 (2003). [CrossRef]
  28. E. W. Edwards, M. F. Montague, H. H. Solak, C. J. Hawker, and P. F. Nealey, “Precise Control over Molecular Dimensions of Block-Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates,” Adv. Mater.16(15), 1315–1319 (2004). [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  30. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005). [CrossRef]
  31. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004). [CrossRef] [PubMed]
  32. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37(9), 1792–1805 (2008). [CrossRef] [PubMed]
  33. S. M. Adams, S. Campione, F. Capolino, and R. Ragan, “Directing cluster formation of Au nanoparticles from colloidal solution,” Langmuir (2013). [CrossRef]
  34. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,” Nano Lett.3(8), 1087–1090 (2003). [CrossRef]
  35. K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc.132(31), 10903–10910 (2010). [CrossRef] [PubMed]
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  37. S. Steshenko and F. Capolino, “Single Dipole Approximation for Modeling Collections of Nanoscatterers,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009, Chap. 8).
  38. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  39. N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett.399(1-3), 167–171 (2004). [CrossRef]
  40. S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres,” Opt. Express19(27), 26027–26043 (2011). [CrossRef] [PubMed]
  41. M. A. Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys.14(10), 103016 (2012). [CrossRef]
  42. A. Vallecchi, S. Campione, and F. Capolino, “Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas,” J. Nanophoton.4(1), 041577 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited