OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 7974–7993

Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates

Michael Kahnert, Timo Nousiainen, and Hannakaisa Lindqvist  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 7974-7993 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3032 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical properties of light absorbing carbon (LAC) aggregates encapsulated in a shell of sulfate are computed for realistic model geometries based on field measurements. Computations are performed for wavelengths from the UV-C to the mid-IR. Both climate- and remote sensing-relevant optical properties are considered. The results are compared to commonly used simplified model geometries, none of which gives a realistic representation of the distribution of the LAC mass within the host material and, as a consequence, fail to predict the optical properties accurately. A new core-gray shell model is introduced, which accurately reproduces the size- and wavelength dependence of the integrated and differential optical properties.

© 2013 OSA

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(290.1350) Scattering : Backscattering
(290.5850) Scattering : Scattering, particles
(290.5825) Scattering : Scattering theory
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:

Original Manuscript: February 1, 2013
Revised Manuscript: March 18, 2013
Manuscript Accepted: March 19, 2013
Published: March 26, 2013

Michael Kahnert, Timo Nousiainen, and Hannakaisa Lindqvist, "Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates," Opt. Express 21, 7974-7993 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. R. Jones, “Light scattering in combustion,” in Light Scattering Reviews, A. Kokhanovsky, ed. (Springer, 2006). [CrossRef]
  2. M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci.34, 1421–1444 (2003). [CrossRef]
  3. J. Hallett, J. G. Hudson, and C. F. Rogers, “Characterization of combustion aerosols for haze and cloud formation,” Aerosol Sci. Technol.10, 70–83 (1989). [CrossRef]
  4. I. Colbeck, L. Appleby, E. J. Hardman, and R. M. Harrison, “The optical properties and morphology of cloud-processed carbonaceous smoke,” J. Aerosol Sci.21, 527–538 (1990). [CrossRef]
  5. G. Ramachandran and P. C. Reist, “Characterization of morphological changes in agglomerates subject to condensation and evaporation using multiple fractal dimensions,” Aerosol Sci. Technol.23, 431–442 (1995). [CrossRef]
  6. S. Nyeki and I. Colbeck, “Fractal dimension analysis of single, in-situ, restructured carbonaceous aggregates,” Aerosol Sci. Technol.23, 109–120 (1995). [CrossRef]
  7. N. Riemer, H. Vogel, and B. Vogel, “Soot aging time scales in polluted regions during day and night,” Atmos. Chem. Phys.4, 1885–1893 (2004). [CrossRef]
  8. S. Tsyro, D. Simpson, L. Tarrasón, Z. K. K. Kupiainen, C. Pio, and K. E. Yttri, “Modelling of elemental carbon over Europe,” J. Geophys. Res.112, D23S19, (2007). [CrossRef]
  9. B. Croft, U. Lohmann, and K. von Salzen, “Black carbon aging in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model,” Atmos. Chem. Phys.5, 1383–1419 (2005). [CrossRef]
  10. R. J. Park, D. J. Jacob, P. I. Palmer, A. D. Clarke, R. J. Weber, M. A. Zondlo, F. L. Eisele, A. R. Bandy, D. C. Thornton, G. W. Sachse, and T. C. Bond, “Export efficiency of black carbon aerosol in continental outflow: Global implications,” J. Geophys. Res.110, D11205, (2005). [CrossRef]
  11. A. Worringen, M. Ebert, T. Trautmann, S. Weinbruch, and G. Helas, “Optical properties of internally mixed ammonium sulfate and soot particles–a study of individual aerosol particles and ambient aerosol populations,” Appl. Opt.47, 3835–3845 (2008). [CrossRef] [PubMed]
  12. B. Scarnato, S. Vahidinia, D. T. Richard, and T. W. Kirchstetter, “Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model,” Atmos. Chem. Phys. Discuss.12, 26401–26434 (2012). [CrossRef]
  13. K. Adachi and P. R. Buseck, “Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City,” Atmos. Chem. Phys.8, 6469–6481 (2008). [CrossRef]
  14. T. C. Bond, G. Habib, and R. W. Bergstrom, “Limitations in the enhancement of visible light absorption due to mixing state,” J. Geophys. Res.111, D20211, (2006). [CrossRef]
  15. M. Kahnert, T. Nousiainen, H. Lindqvist, and M. Ebert, “Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations,” Opt. Express20, 10042–10058 (2012). [CrossRef] [PubMed]
  16. M. Kahnert, “On the discrepancy between modelled and measured mass absorption cross sections of light absorbing carbon aerosols,” Aerosol Sci. Technol.44, 453–460 (2010). [CrossRef]
  17. M. I. Mishchenko, V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, “Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions,” J. Quant. Spectrosc. Radiat. Transfer112, 671–692 (2011). [CrossRef]
  18. M. Kahnert, “Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model,” Atmos. Chem. Phys.10, 1403–1416 (2010). [CrossRef]
  19. M. Kahnert, “Numerically exact computation of the optical properties of light absorbing carbon aggregates for wavelength of 200 nm V 12.2 μm,” Atmos. Chem. Phys.10, 8319–8329 (2010). [CrossRef]
  20. M. Kahnert and A. Devasthale, “Black carbon fractal morphology and short-wave radiative impact: a modelling study,” Atmos. Chem. Phys.11, 11745–11759 (2011). [CrossRef]
  21. P. Chýlek, G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, “Effective medium approximations for heterogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 274–308.
  22. G. Videen and P. Chýlek, “Scattering by a composite sphere with an absorbing inclusion and effective medium approximations,” Opt. Commun.158, 1–6 (1998). [CrossRef]
  23. M. Z. Jacobson, “Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols,” Nature409, 695–697 (2001). [CrossRef] [PubMed]
  24. K. Adachi, S. Chung, and P. R. Buseck, “Shapes of soot aerosol particles and implications for their effects on climate,” J. Geophys. Res.115, D15206, (2010). [CrossRef]
  25. M. Wentzel, G. Gorzawski, K.-H. Naumann, H. Saathoff, and S. Weinbruch, “Transmission electron microscopical and aerosol dynamical characterization of soot aerosols,” Aerosol Sci.34, 1347–1370 (2003). [CrossRef]
  26. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. A203, 385–420 (1904). [CrossRef]
  27. M. Kahnert, “Irreducible representations of finite groups in the T matrix formulation of the electromagnetic scattering problem,” J. Opt. Soc. Am. A22, 1187–1199 (2005). [CrossRef]
  28. H. Chang and T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. Lond. A430, 577–591 (1990). [CrossRef]
  29. T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: An investigative review,” Aerosol Sci. Technol.40, 27–67 (2006). [CrossRef]
  30. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Met. Soc.79, 831–844 (1998). [CrossRef]
  31. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11, 1491–1499 (1994). [CrossRef]
  32. B. T. Draine and J. J. Goodman, “Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophysical J.405, 685–697 (1993). [CrossRef]
  33. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A13, 2266–2278 (1996). [CrossRef]
  34. K. Schmidt, M. Yurkin, and M. Kahnert, “A case study on the reciprocity in light scattering computations,” Opt. Express20, 23253–23274 (2012). [CrossRef] [PubMed]
  35. D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” Tech. rep., http://arxiv.org/abs/astro-ph/0403082 (2004).
  36. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).
  37. O. B. Toon and T. P. Ackermann, “Algorithms for the calculation of scattering by stratified spheres,” Appl. Opt.20, 3657–3660 (1981). [CrossRef] [PubMed]
  38. K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonaceous particles,” J. Geophys. Res.104, 15941–15954 (1999). [CrossRef]
  39. G. Lesins, P. Chylek, and U. Lohmann, “A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing,” J. Geophys. Res.107(D10), 4094, (2002). [CrossRef]
  40. S. Mogo, V. E. Cachorro, A. de Frutos, and A. Rodrigues, “Absorption ångström exponents of aerosols and light absorbing carbon (lac) obtained from in situ data in Covilhã, central Portugal,” J. Environ. Monit.14, 3174–3181 (2012). [CrossRef] [PubMed]
  41. K. Adachi, S. H. Chung, H. Friedrich, and P. R. Buseck, “Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties,” J. Geophys. Res.112, D14202, (2007). [CrossRef]
  42. E. F. Mikhailov, S. S. Vlasenko, I. A. Podgorny, V. Ramanathan, and C. E. Corrigan, “Optical properties of soot-water drop agglomerates: An experimental study,” J. Geophys. Res.111, D07209, (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited