OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 7994–8006

Silicon photonic micro-disk resonators for label-free biosensing

Samantha M. Grist, Shon A. Schmidt, Jonas Flueckiger, Valentina Donzella, Wei Shi, Sahba Talebi Fard, James T. Kirk, Daniel M. Ratner, Karen C. Cheung, and Lukas Chrostowski  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 7994-8006 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2613 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon photonic biosensors are highly attractive for multiplexed Lab-on-Chip systems. Here, we characterize the sensing performance of 3 µm TE-mode and 10 µm dual TE/TM-mode silicon photonic micro-disk resonators and demonstrate their ability to detect the specific capture of biomolecules. Our experimental results show sensitivities of 26 nm/RIU and 142 nm/RIU, and quality factors of 3.3x104 and 1.6x104 for the TE and TM modes, respectively. Additionally, we show that the large disks contain both TE and TM modes with differing sensing characteristics. Finally, by serializing multiple disks on a single waveguide bus in a CMOS compatible process, we demonstrate a biosensor capable of multiplexed interrogation of biological samples.

© 2013 OSA

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:

Original Manuscript: January 24, 2013
Revised Manuscript: March 7, 2013
Manuscript Accepted: March 9, 2013
Published: March 26, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Samantha M. Grist, Shon A. Schmidt, Jonas Flueckiger, Valentina Donzella, Wei Shi, Sahba Talebi Fard, James T. Kirk, Daniel M. Ratner, Karen C. Cheung, and Lukas Chrostowski, "Silicon photonic micro-disk resonators for label-free biosensing," Opt. Express 21, 7994-8006 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst (Lond.)136(2), 227–236 (2010). [CrossRef] [PubMed]
  2. L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. Cheung, S. Schmidt, D. Ratner, and N. Jaeger, “Silicon photonic resonator sensors and devices,” Proc. SPIE 8236, 823620 1–16 (2012).
  3. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem.81(22), 9499–9506 (2009). [CrossRef] [PubMed]
  4. A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem.82(1), 69–72 (2010). [CrossRef] [PubMed]
  5. N. M. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler, “Progress in chip-scale photonic sensing,” IEEE Trans. Biomed. Circuits Syst.3(4), 202–211 (2009). [CrossRef]
  6. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010). [CrossRef]
  7. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  8. C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett.33(7), 708–710 (2008). [CrossRef] [PubMed]
  9. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J.1(3), 197–204 (2009). [CrossRef]
  10. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007). [CrossRef] [PubMed]
  11. F. Ferrarese Lupi, D. Navarro-Urrios, J. Rubio-Garcia, J. Monserrat, C. Domínguez, and B. Garrido, “Optically active μ-disks resonators-based sensor for refractive index variation detection,” Proc. SPIE 8431, 84311B 1–8 (2012).
  12. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express15(8), 4694–4704 (2007). [CrossRef] [PubMed]
  13. S. Yegnanarayanan, W. Roman, M. Soltani, G. Cremona, H. Lu, and A. Adibi, “On-chip integration of microfluidic channels with ultra-high Q silicon microdisk resonators for lab-on-a-chip sensing applications,” in Lasers and Electro-Optics Society,2007. LEOS 2007. The 20th Annual Meeting of the IEEE (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 50–51. [CrossRef]
  14. A. Di Falco, L. Ofaolain, and T. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 1–3 (2009).
  15. J. Jágerská, H. Zhang, Z. Diao, N. Le Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett.35(15), 2523–2525 (2010). [CrossRef] [PubMed]
  16. P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express17(17), 15330–15341 (2009). [CrossRef] [PubMed]
  17. J. T. Kirk, N. D. Brault, T. Baehr-Jones, M. Hochberg, S. Jiang, and D. M. Ratner, “Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma,” Biosens. Bioelectron.42, 100–105 (2013). [CrossRef] [PubMed]
  18. I. White, H. Zhu, J. Suter, and X. Fan, “Label-free biosensing with the optofluidic ring resonator,” in Advanced Photonic Structures for Biological and Chemical Detection, X. Fan, ed. (Springer US, 2009), pp. 377–393.
  19. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004). [CrossRef]
  20. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO waveguide: experiments and model,” Appl. Phys. Lett.77(11), 1617–1619 (2000). [CrossRef]
  21. S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. D. Muri, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng.85(5-6), 1210–1213 (2008). [CrossRef]
  22. D. X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J. M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express18(22), 22867–22879 (2010). [CrossRef] [PubMed]
  23. W. Shi, H. Yun, W. Zhang, C. Lin, T. K. Chang, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, high-Q silicon microdisk reflectors,” Opt. Express20(20), 21840–21846 (2012). [CrossRef] [PubMed]
  24. M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron.26(4), 1283–1291 (2010). [CrossRef] [PubMed]
  25. S. A. Darst, M. Ahlers, P. H. Meller, E. W. Kubalek, R. Blankenburg, H. O. Ribi, H. Ringsdorf, and R. D. Kornberg, “Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules,” Biophys. J.59(2), 387–396 (1991). [CrossRef] [PubMed]
  26. A. L. Weisenhorn, F. J. Schmitt, W. Knoll, and P. K. Hansma, “Streptavidin binding observed with an atomic force microscope,” Ultramicroscopy42-44(Pt B), 1125–1132 (1992). [CrossRef] [PubMed]
  27. J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in PDMS microfluidic channel,” Proc. SPIE 7929, 79290I 1–10 (2011).
  28. S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. D. Muri, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng.85(5-6), 1210–1213 (2008). [CrossRef]
  29. M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B25(6), 2034–2037 (2007). [CrossRef]
  30. Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China2(3), 308–311 (2009). [CrossRef]
  31. Y. Chen, J. Feng, Z. Zhou, J. Yu, C. J. Summers, and D. S. Citrin, “Fabrication of silicon microring resonator with smooth sidewalls,” J. Micro/Nanolithogr. MEMS MOEMS 8, 043060 1–5 (2009).
  32. S. G. Attila Mekis, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17, 597–608 (2011).
  33. R. L. Sokoloff, K. C. Norton, C. L. Gasior, K. M. Marker, and L. S. Grauer, “A dual-monoclonal sandwich assay for prostate-specific membrane antigen: Levels in tissues, seminal fluid and urine,” Prostate43(2), 150–157 (2000). [CrossRef] [PubMed]
  34. U. B. Nielsen and B. H. Geierstanger, “Multiplexed sandwich assays in microarray format,” J. Immunol. Methods290(1-2), 107–120 (2004). [CrossRef] [PubMed]
  35. G. Moţa, I. Moraru, J. Sjöquist, and V. Gheţie, “Protein A as a molecular probe for the detection of antigen induced conformational change in Fc region of rabbit antibody,” Mol. Immunol.18(5), 373–378 (1981). [CrossRef] [PubMed]
  36. W. L. DeLano, M. H. Ultsch, A. M. de Vos, and J. A. Wells, “Convergent solutions to binding at a protein-protein interface,” Science287(5456), 1279–1283 (2000). [CrossRef] [PubMed]
  37. H. Elwing, “Protein absorption and ellipsometry in biomaterial research,” Biomaterials19(4-5), 397–406 (1998). [CrossRef] [PubMed]
  38. K. P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface,” JACS121(34), 7925–7930 (1999). [CrossRef]
  39. M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci.233(2), 180–189 (2001). [CrossRef] [PubMed]
  40. M. Graille, E. A. Stura, A. L. Corper, B. J. Sutton, M. J. Taussig, J.-B. Charbonnier, and G. J. Silverman, “Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5399–5404 (2000). [CrossRef] [PubMed]
  41. H. P. Erickson, “Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy,” Biol. Proced. Online11(1), 32–51 (2009). [CrossRef] [PubMed]
  42. J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J.87(1), 553–561 (2004). [CrossRef] [PubMed]
  43. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B23(7), 1381–1389 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited