OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8007–8017

Characteristics and instabilities of mode-locked quantum-dot diode lasers

Yan Li, Luke. F. Lester, Derek Chang, Carsten Langrock, M. M. Fejer, and Daniel J. Kane  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8007-8017 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2441 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current pulse measurement methods have proven inadequate to fully understand the characteristics of passively mode-locked quantum-dot diode lasers. These devices are very difficult to characterize because of their low peak powers, high bandwidth, large time-bandwidth product, and large timing jitter. In this paper, we discuss the origin for the inadequacies of current pulse measurement techniques while presenting new ways of examining frequency-resolved optical gating (FROG) data to provide insight into the operation of these devices. Under the assumptions of a partial coherence model for the pulsed laser, it is shown that simultaneous time-frequency characterization is a necessary and sufficient condition for characterization of mode-locking. Full pulse characterization of quantum dot passively mode-locked lasers (QD MLLs) was done using FROG in a collinear configuration using an aperiodically poled lithium niobate waveguide-based FROG pulse measurement system.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 28, 2012
Revised Manuscript: November 24, 2012
Manuscript Accepted: March 12, 2013
Published: March 26, 2013

Yan Li, Luke. F. Lester, Derek Chang, Carsten Langrock, M. M. Fejer, and Daniel J. Kane, "Characteristics and instabilities of mode-locked quantum-dot diode lasers," Opt. Express 21, 8007-8017 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007). [CrossRef]
  2. D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot Lasers,” IEEE J. Sel. Top. Quantum Electron.3(2), 196–205 (1997). [CrossRef]
  3. X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001). [CrossRef]
  4. Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express15(12), 7623–7633 (2007). [CrossRef] [PubMed]
  5. C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester, “Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers,” Opt. Express17(22), 19739–19748 (2009). [CrossRef] [PubMed]
  6. D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett.89(17), 171111 (2006). [CrossRef]
  7. M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009). [CrossRef]
  8. D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films267(1-2), 32–36 (1995). [CrossRef]
  9. D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett.44(3), 168–171 (2008). [CrossRef]
  10. L. Zhang, L.-S. Cheng, A. L. Gray, H. Huang, S. Kutty, H. Li, J. Nagyvary, F. Nabulsi, L. Olona, E. Pease, Q. Sun, C. Wiggins, J. C. Zilko, Z. Zou, and P. M. Varangis, “High-power low-jitter quantum-dot passively modelocked lasers,” Proc. SPIE6115, 611502, 611502-8 (2006). [CrossRef]
  11. G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003). [CrossRef]
  12. A. A. Aboketaf, A. W. Elshaari, and S. F. Preble, “Optical time division multiplexer on silicon chip,” Opt. Express18(13), 13529–13535 (2010). [CrossRef] [PubMed]
  13. M. Mielke, G. A. Alphonse, and P. J. Delfyett, “168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.15(4), 501–503 (2003). [CrossRef]
  14. Y. Li, F. L. Chiragh, Y.-C. Xin, C.-Y. Lin, J. Kim, C. G. Christodoulou, and L. F. Lester, “Harmonic mode-locking using the double interval technique in quantum dot lasers,” Opt. Express15, 7623–7633 (2010). [CrossRef] [PubMed]
  15. C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact optical generation of microwave signals using a monolithic quantum dot passively mode-locked laser,” IEEE Photon. Journal1(4), 236–244 (2009). [CrossRef]
  16. M. Xia, M. G. Thompson, R. V. Penty, and I. H. White, “External-cavity mode-locked quantum-dot lasers for low repetition rate, sub-picosecond pulse generation,” presented at the Lasers Elect.-Opt. (CLEO) Conf. San Jose, CA, 2008. [CrossRef]
  17. C.-Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express18(21), 21932–21937 (2010). [CrossRef] [PubMed]
  18. M. G. Thompson, R. V. Penty, and I. H. White, “Regimes of modelocking in tapered quantum dot laser diodes,” in Proc. Semicond. Laser Conf. (ISLC), Sorrento, Italy, Sep. 2008, pp. 27–28.
  19. Y.-C. Xin, D. J. Kane, and L. F. Lester, “Frequency-resolved optical gating characterisation of passively modelocked quantum-dot laser,” Electron. Lett.44(21), 1255–1256 (2008). [CrossRef]
  20. H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express18(4), 3415–3425 (2010). [CrossRef] [PubMed]
  21. G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijevic, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron.45(11), 1429–1435 (2009). [CrossRef]
  22. N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett.97(10), 101105 (2010). [CrossRef]
  23. T. Habruseva, S. O’Donoghue, N. Rebrova, D. A. Reid, L. P. Barry, D. Rachinskii, G. Huyet, and S. P. Hegarty, “Quantum-dot mode-locked lasers with dual-mode optical injection,” IEEE Photon. Technol. Lett.22(6), 359–361 (2010). [CrossRef]
  24. J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett.37(14), 2874–2876 (2012). [CrossRef] [PubMed]
  25. D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency -resolved optical gating,” IEEE J. Quantum Electron.29(2), 571–579 (1993). [CrossRef]
  26. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum.68(9), 3277–3295 (1997). [CrossRef]
  27. B. Kohler, V. V. Yakovlev, K. R. Wilson, J. Squier, K. W. Delong, and R. Trebino, “Phase and intensity characterization of femtosecond pulses from a chirped-pulse amplifier by frequency-resolved optical gating,” Opt. Lett.20(5), 483–485 (1995). [CrossRef] [PubMed]
  28. M. Photonics, “FROG scan screen captures of shaped pulses,” http://www.mesaphotonics.com/products-2/pulse-measurement/frogscan-data/ .
  29. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).
  30. T. Pfeifer, Y. Jiang, S. Düsterer, R. Moshammer, and J. Ullrich, “Partial-coherence method to model experimental free-electron laser pulse statistics,” Opt. Lett.35(20), 3441–3443 (2010). [CrossRef] [PubMed]
  31. S.-D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultrasensitive second-harmonic generation frequency-resolved optical gating by aperiodically poled LiNbO3 waveguides at 1.5 microm,” Opt. Lett.30(16), 2164–2166 (2005). [CrossRef] [PubMed]
  32. I. Amat-Roldán, I. G. Cormack, P. Loza-Alvarez, E. Gualda, and D. Artigas, “Ultrashort pulse characterisation with SHG collinear-FROG,” Opt. Express12(6), 1169–1178 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited