OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8018–8024

Optical lock-in particle tracking in optical tweezers

Michael A Taylor, Joachim Knittel, and Warwick P Bowen  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8018-8024 (2013)
http://dx.doi.org/10.1364/OE.21.008018


View Full Text Article

Enhanced HTML    Acrobat PDF (785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a lock-in particle tracking scheme in optical tweezers based on stroboscopic modulation of an illuminating optical field. This scheme is found to evade low frequency noise sources while otherwise producing an equivalent position measurement to continuous measurement. This was demonstrated to yield up to 20 dB of noise suppression at both low frequencies (< 1 kHz), where low frequency electronic noise was significant, and around 630 kHz where laser relaxation oscillations introduced laser noise. The setup is simple, and compatible with any trapping optics.

© 2013 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: January 8, 2013
Revised Manuscript: February 28, 2013
Manuscript Accepted: March 13, 2013
Published: March 26, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Michael A Taylor, Joachim Knittel, and Warwick P Bowen, "Optical lock-in particle tracking in optical tweezers," Opt. Express 21, 8018-8024 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-8018


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987). [CrossRef] [PubMed]
  2. M. A. Taylor, J. Knittel, and W. P. Bowen, “Fundamental constraints on particle tracking with optical tweezers,” New J. Phys.15, 023018 (2013). [CrossRef]
  3. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett.23, 7–9 (1998). [CrossRef]
  4. I. Chavez, R. Huang, K. Henderson, E.-L. Florin, and M. G. Raizen, “Development of a fast position-sensitive laser beam detector,” Rev. Sci. Instrum.79, 105104 (2008). [CrossRef] [PubMed]
  5. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77, 205–228 (2008). [CrossRef]
  6. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature368, 113–119 (1994). [CrossRef] [PubMed]
  7. A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nature Photon.6, 469–473 (2012). [CrossRef]
  8. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, 1993 “Direct observation of kinesin stepping by optical trapping interferometry,” Nature365, 721–727 (1993). [CrossRef] [PubMed]
  9. C. Bustamante, Y. R. Chemla, N. R. Forde, and D. Izhaky, “Mechanical processes in biochemistry,” Annu. Rev. Biochem.73, 705–748 (2004). [CrossRef]
  10. C. Bustamante, “Unfolding single RNA molecules: bridging the gap between equilibrium and non-equilibrium statistical thermodynamics,” Q. Rev. Biophys.38, 291–301 (2005). [CrossRef]
  11. W. J. Greenleaf and S. M. Block, “Single-molecule, motion-based DNA sequencing using RNA polymerase,” Science313, 801 (2006). [CrossRef] [PubMed]
  12. P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, and V. Sandoghdar, “High-speed nanoscopic tracking of the position and orientation of a single virus,” Nat. Methods6, 923–929 (2009). [CrossRef] [PubMed]
  13. M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nature Photon. (2013). [CrossRef]
  14. S. Yamada, D. Wirtz, and S. C. Kuo, “Mechanics of living cells measured by laser tracking microrheology,” Biophys. J.78, 1736–1747 (2000). [CrossRef] [PubMed]
  15. E. N. Senning and A. H. Marcus, “Actin polymerization driven mitochondrial transport in mating S. cerevisiae,” Proc. Natl. Acad. Sci. USA107, 721–725 (2010). [CrossRef] [PubMed]
  16. I. M. Tolić-Nørrelykke, E.-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sørensen, “Anomalous diffusion in living yeast cells,” Phys. Rev. Lett.93, 078102 (2004). [CrossRef]
  17. T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi, L. Forró, and S. Jeney, “Resonances arising from hydrodynamic memory in Brownian motion,” Nature478, 85–88 (2011). [CrossRef] [PubMed]
  18. R. Huang, I. Chavez I, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid,” Nature Phys.7, 576–580 (2011). [CrossRef]
  19. D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. USA107, 1005–1010 (2010). [CrossRef] [PubMed]
  20. T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nature Phys.7, 527–530 (2011). [CrossRef]
  21. M. A. Taylor, J. Knittel, M. T. L. Hsu, H.-A. Bachor, and W. P. Bowen, “Sagnac interferometer-enhanced particle tracking in optical tweezers,” J. Opt.13, 044014 (2011). [CrossRef]
  22. J. W. Tay, M. T. L. Hsu, and W. P. Bowen, “Quantum limited particle sensing in optical tweezers,” Phys. Rev. A80063806 (2009). [CrossRef]
  23. P. Kwee and B. Willke, “Automatic laser beam characterization of monolithic Nd:YAG nonplanar ring lasers,” Appl. Opt.476022–6032 (2008) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited