OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8062–8068

Improved performance of GaN-based vertical light emitting diodes with conducting and transparent single-walled carbon nanotube networks

Su Jin Kim, Kyeong Heon Kim, and Tae Geun Kim  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8062-8068 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2651 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, reduced forward voltage and improved light output power of GaN-based vertical light-emitting diodes (VLEDs) incorporating single-walled carbon nanotube (SWNT)-networks is reported. The SWNT-networks were directly formed on a roughened (textured) n-GaN surface via a solution-processed dip-coating method. The surface-roughened VLEDs with the proposed SWNT-networks had a forward voltage of 3.84 V at 350 mA, lower than that of the surface-roughened VLEDs, and exhibited an increase in light output power by 12.9% at 350 mA compared to the surface-roughened VLEDs. These improved electrical and optical properties could be attributed to the SWNT-networks put on the roughened n-GaN surface, which increase the lateral current transport and create scattering of light through the formation of additional roughness.

© 2013 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(250.0250) Optoelectronics : Optoelectronics
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Devices

Original Manuscript: January 22, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 18, 2013
Published: March 26, 2013

Su Jin Kim, Kyeong Heon Kim, and Tae Geun Kim, "Improved performance of GaN-based vertical light emitting diodes with conducting and transparent single-walled carbon nanotube networks," Opt. Express 21, 8062-8068 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. F. Chu, C. C. Cheng, W. H. Liu, J. Y. Chu, F. H. Fan, H. C. Cheng, T. Doan, and C. A. Tran, “High brightness GaN vertical light-emitting diodes on metal alloy for general lighting application,” Proc. IEEE98(7), 1197–1207 (2010). [CrossRef]
  2. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855 (2004). [CrossRef]
  3. H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. W. Kim, J. S. Lee, B. S. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim, and Y. H. Lee, “Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes,” Opt. Express14(19), 8654–8660 (2006). [CrossRef] [PubMed]
  4. H.-M. An, J. I. Sim, K. S. Shin, Y. M. Sung, and T. G. Kim, “Increased light extraction from vertical GaN light-emitting diodes with ordered, cone-shaped deep-pillar nanostructures,” IEEE J. Quantum Electron.48(7), 891–896 (2012). [CrossRef]
  5. T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes,” Appl. Phys. Lett.84(4), 466–468 (2004). [CrossRef]
  6. Y. C. Shin, D. H. Kim, D. J. Chae, J. W. Yang, J. I. Shim, J. M. Park, K.-M. Ho, K. Constant, H. Y. Ryu, and T. G. Kim, “Effects of nanometer-scale photonic crystal structures on the light extraction from GaN light emitting diodes,” IEEE J. Quantum Electron.46(9), 1375–1380 (2010). [CrossRef]
  7. R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett.86(22), 221101 (2005). [CrossRef]
  8. X. A. Cao, H. Piao, J. Li, J. Y. Lin, and H. X. Jiang, “Surface chemical and electronic properties of plasma-treated n-type Al0.5Ga0.5N,” Phys. Status Solidi204(10), 3410–3416 (2007) (a). [CrossRef]
  9. K. M. Uang, S. J. Wang, T.-M. Chen, W.-C. Lee, S.-L. Chen, Y.-Y. Wang, and H. Kuan, “Enhanced Performance of Vertical GaN-Based Light-Emitting Diodes with a Current-Blocking Layer and Electroplated Nickel Substrate,” Jpn. J. Appl. Phys.48(10), 102101 (2009). [CrossRef]
  10. S.-J. Wang, S.-L. Chen, K.-M. Uang, W.-C. Lee, T.-M. Chen, C.-H. Chen, and B.-W. Liou, “The Use of Transparent Conducting Indium–Zinc Oxide Film as a Current Spreading Layer for Vertical-Structured High-Power GaN-Based Light-Emitting Diodes,” IEEE Photon. Technol. Lett.18(10), 1146–1148 (2006). [CrossRef]
  11. J. P. Novak, M. D. Lay, F. K. Perkins, and E. S. Snow, “Macroelectronic applications of carbon nanotube networks,” Solid-State Electron.48(10–11), 1753–1756 (2004). [CrossRef]
  12. L. Hu, D. S. Hecht, and G. Gruner, “Percolation in Transparent and Conducting Carbon Nanotube Networks,” Nano Lett.4(12), 2513–2517 (2004). [CrossRef]
  13. R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, “Ultrasmooth, Large‐Area, High‐Uniformity, Conductive Transparent Single‐Walled‐Carbon‐Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Adv. Mater.21(31), 3210–3216 (2009). [CrossRef]
  14. M. A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M. L. Usrey, M. S. Strano, and J. Rogers, “Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films,” Nano Lett.4(9), 1643–1647 (2004). [CrossRef]
  15. M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006). [CrossRef]
  16. T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge, and R. E. Smalley, “Single-Wall Carbon Nanotube Films,” Chem. Mater.15(1), 175–178 (2003). [CrossRef]
  17. D. P. Long, J. L. Lazorcik, and R. Shashidhar, “Magnetically Directed Self-Assembly of Carbon Nanotube Devices,” Adv. Mater.16(9–10), 815–819 (2004).
  18. S. Blatt, F. Hennrich, H. V. Löhneysen, M. M. Kappes, A. Vijayaraghavan, and R. Krupke, “Influence of Structural and Dielectric Anisotropy on the Dielectrophoresis of Single-Walled Carbon Nanotubes,” Nano Lett.7(7), 1960–1966 (2007). [CrossRef] [PubMed]
  19. N. P. Armitage, J. C. P. Gabriel, and G. Gruner, “Quasi-Langmuir–Blodgett thin film deposition of carbon nanotubes,” J. Appl. Phys.95(6), 3228 (2004). [CrossRef]
  20. K. H. Kim, C. W. Jang, T. G. Kim, S. Lee, S. H. Kim, and Y. T. Byun, “Processing Technique for Single-Walled Carbon Nanotube-Based Sensor Arrays,” J. Nanosci. Nanotechnol.12(2), 1251–1255 (2012). [CrossRef] [PubMed]
  21. K. H. Kim, T. G. Kim, S. Lee, Y. M. Jhon, S. H. Kim, and Y. T. Byun, “Simple Assembling Technique of Single-Walled Carbon Nanotubed Using Only Photolithography,” J. Korean Phys. Soc.58(5), 1380–1383 (2011).
  22. G. Xiao, Y. Tao, J. Lu, and Z. Zhang, “Highly conductive and transparent carbon nanotube composite thin films deposited on polyethylene terephthalate solution dipping,” Thin Solid Films518(10), 2822–2824 (2010). [CrossRef]
  23. T. Wang, “Light Scattering Study on Single Wall Carbon Nanotube (SWNT) Dispersions,” MS. thesis, School of Polymer, Textile and Fiber Eng., Georgia Institute of Technology (2004).
  24. H. S. Woo, R. Czerw, S. Webster, D. L. Carroll, J. W. Park, and J. H. Lee, “Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: the role of carbon nanotubes in a hole conducting polymer,” Synth. Met.116(1–3), 369–372 (2001). [CrossRef]
  25. J. Suh, H. Song, and E. K. Kim, “Enhancement of Photoluminescence from ZnO Film by Single Wall Carbon Nanotubes,” J. Nanosci. Nanotechnol.11(7), 6148–6151 (2011). [CrossRef] [PubMed]
  26. D. S. Hecht, D. Thomas, L. B. Hu, C. Ladous, T. Lam, Y. Park, G. Irvin, and P. Drzaic, “Carbon-nanotube film on plastic as transparent electrode for resistive touch screens,” J. Soc. Inf. Disp.17(11), 941–946 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited