OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8101–8115

On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glasses

Mark A. Hughes, Russell M. Gwilliam, Kevin Homewood, Behrad Gholipour, Daniel W. Hewak, Tae-Hoon Lee, Stephen R. Elliott, Takenobu Suzuki, Yasutake Ohishi, Tomas Kohoutek, and Richard J. Curry  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8101-8115 (2013)
http://dx.doi.org/10.1364/OE.21.008101


View Full Text Article

Enhanced HTML    Acrobat PDF (1584 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Reaction order in Bi-doped oxide glasses depends on the optical basicity of the glass host. Red and NIR photoluminescence (PL) bands result from Bi2+ and Bin clusters, respectively. Very similar centers are present in Bi- and Pb-doped oxide and chalcogenide glasses. Bi-implanted and Bi melt-doped chalcogenide glasses display new PL bands, indicating that new Bi centers are formed. Bi-related PL bands have been observed in glasses with very similar compositions to those in which carrier-type reversal has been observed, indicating that these phenomena are related to the same Bi centers, which we suggest are interstitial Bi2+ and Bi clusters.

© 2013 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.6000) Materials : Semiconductor materials

ToC Category:
Materials

History
Original Manuscript: February 8, 2013
Revised Manuscript: March 2, 2013
Manuscript Accepted: March 10, 2013
Published: March 27, 2013

Citation
Mark A. Hughes, Russell M. Gwilliam, Kevin Homewood, Behrad Gholipour, Daniel W. Hewak, Tae-Hoon Lee, Stephen R. Elliott, Takenobu Suzuki, Yasutake Ohishi, Tomas Kohoutek, and Richard J. Curry, "On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glasses," Opt. Express 21, 8101-8115 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-8101


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. W. Chi, D. C. Zhou, Z. G. Song, and J. B. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009). [CrossRef]
  2. A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi⁺ and cluster Bi₅³⁺ luminescence in AlCl₃/ZnCl₂/BiCl₃ chloride glass,” Opt. Express20(7), 7212–7220 (2012). [CrossRef] [PubMed]
  3. M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007). [CrossRef]
  4. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007). [CrossRef]
  5. M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008). [CrossRef]
  6. J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res.22(06), 1574–1578 (2007). [CrossRef]
  7. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004). [CrossRef] [PubMed]
  8. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005). [CrossRef] [PubMed]
  9. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express13(5), 1628–1634 (2005). [CrossRef] [PubMed]
  10. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express13(5), 1635–1642 (2005). [CrossRef] [PubMed]
  11. G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett.25(5), 1891–1894 (2008). [CrossRef]
  12. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009). [CrossRef] [PubMed]
  13. Y. Fujimoto and M. Nakatsuka, “Infrared Luminescence from Bismuth-Doped Silica Glass,” Jpn. J. Appl. Phys. Part 2 Lett40, L279–L281 (2001).
  14. X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun.268(1), 75–78 (2006). [CrossRef]
  15. M. Y. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett.33(18), 2131–2133 (2008). [CrossRef] [PubMed]
  16. S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn.115(1340), 259–263 (2007). [CrossRef]
  17. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett.33(13), 1488–1490 (2008). [CrossRef] [PubMed]
  18. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009). [CrossRef]
  19. S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Guryanov, and E. M. Dianov, “Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,” Quantum Electron.41(7), 581–583 (2011). [CrossRef]
  20. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008). [CrossRef]
  21. S. Kivisto, J. Puustinen, M. Guina, O. G. Okhotnikov, and E. M. Dianov, “Tunable modelocked bismuth-doped soliton fibre laser,” Electron. Lett.44(25), 1456–1458 (2008). [CrossRef]
  22. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express15(9), 5473–5476 (2007). [CrossRef] [PubMed]
  23. S. Yoo, M. P. Kalita, J. Sahu, J. Nilsson, and D. Payne, “Bismuth-doped fiber laser at 1.16 mm,” in Lasers and Electro-Optics, Conference on Quantum Electronics and Laser Science. CLEO/QELS, 2008), 1–2.
  24. J. C. Phillips, “Constraint theory and carrier-type reversal in Bi-Ge chalcogenide alloy glasses,” Phys. Rev. B Condens. Matter36(8), 4265–4270 (1987). [CrossRef] [PubMed]
  25. K. L. Bhatia, D. P. Gosain, G. Parthasarathy, and E. S. R. Gopal, “On the structural features of doped amorphous chalcogenide semiconductors,” J. Non-Cryst. Solids86(1-2), 65–71 (1986). [CrossRef]
  26. L. Tichý, H. Tichá, A. Třiska, and P. Nagels, “Is the n-type conductivity in some Bi-doped chalcogenide glasses controlled by percolation?” Solid State Commun.53(4), 399–402 (1985). [CrossRef]
  27. V. K. Bhatnagar and K. L. Bhatia, “Frequency dependent electrical transport in bismuth-modified amorphous germanium sulfide semiconductors,” J. Non-Cryst. Solids119(2), 214–231 (1990). [CrossRef]
  28. S. R. Elliott and A. T. Steel, “Mechanism for Doping in Bi Chalcogenide Glasses,” Phys. Rev. Lett.57(11), 1316–1319 (1986). [CrossRef] [PubMed]
  29. P. Kounavis, E. Mytilineou, and M. Roilos, “p-n junctions from sputtered Ge25Se75 - xBix films,” J. Appl. Phys.66(2), 708–710 (1989). [CrossRef]
  30. H. Fritzsche and M. Kastner, “The effect of charged additives on the carrier concentrations in lone-pair semiconductors,” Philos. Mag. B37(3), 285–292 (1978). [CrossRef]
  31. S. Okano, H. Yamakawa, M. Suzuki, and A. Hiraki, “Fabrication of Chalcogenide Amorphous Semiconductor Diodes Using Low Temperature Thermal Diffusion Techniques,” Jpn. J. Appl. Phys.26(Part 1, No. 7), 1102–1106 (1987). [CrossRef]
  32. S. Okano, M. Suzuki, T. Imura, and A. Hiraki, “Chalcogenide amorphous-semiconductor diodes,” Jpn. J. Appl. Phys. Part 2 Lett24, L445–L448 (1985).
  33. S. Okano, M. Suzuki, and M. Suzuki, “Electrical contact properties of metal-chalcogenide amorphous-semiconductor systems,” Jpn. J. Appl. Phys.20(9), 1635–1640 (1981). [CrossRef]
  34. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006). [CrossRef]
  35. M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B25(8), 1380–1386 (2008). [CrossRef]
  36. S. Parke and R. S. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids34(1), 85–95 (1973). [CrossRef]
  37. B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys.19(5), 1105–1111 (2009). [CrossRef]
  38. M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass,” Opt. Mater.32(9), 1028–1034 (2010). [CrossRef]
  39. M. Hughes, T. Suzuki, and Y. Ohishi, “Towards a high-performance optical gain medium based on bismuth and aluminum co-doped germanate glass,” J. Non-Cryst. Solids356(6-8), 407–418 (2010). [CrossRef]
  40. B. I. Denker, B. I. Galagan, V. V. Osiko, I. L. Shulman, S. E. Sverchkov, and E. M. Dianov, “Factors affecting the formation of near infrared-emitting optical centers in Bi-doped glasses,”Appl. Phys. B.98(2-3), 455–458 (2010). [CrossRef]
  41. X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010). [CrossRef]
  42. Y. Zhou, N. Gai, and J. Wang, “Comparative investigation on spectroscopic properties of Er3+ between Ce3+-doped and B2O3-added bismuth glasses,” J. Phys. Chem. Solids70(2), 261–265 (2009). [CrossRef]
  43. H. Masai, Y. Takahashi, and T. Fujiwara, “Addition effect of SnO in optical property of Bi2O3-containing aluminoborate glass,” J. Appl. Phys.105(8), 4 (2009). [CrossRef]
  44. A. Winterstein, S. Manning, H. Ebendorff-Heidepriem, and L. Wondraczek, “Luminescence from bismuth-germanate glasses and its manipulation through oxidants,” Opt. Mater. Express2(10), 1320–1328 (2012). [CrossRef]
  45. A. Lebouteiller and P. Courtine, “Improvement of a bulk optical basicity table for oxidic systems,” J. Solid State Chem.137(1), 94–103 (1998). [CrossRef]
  46. V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys.79(3), 1736–1740 (1996). [CrossRef]
  47. M. A. Hughes, T. Suzuki, and Y. Ohishi, “Spectroscopy of bismuth doped lead-aluminum-germanate glass and yttrium-aluminum-silicate glass,” J. Non-Cryst. Solids356(44-49), 2302–2309 (2010). [CrossRef]
  48. J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res.22(07), 1954–1958 (2007). [CrossRef]
  49. W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express20(14), 15692–15702 (2012). [CrossRef] [PubMed]
  50. H. Bach, F. K. G. Baucke, and D. Krause, Electrochemistry of Glasses and Glass Melts, Including Glass Electrodes (Springer, 2000).
  51. M. A. Hamstra, H. F. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349 (1994). [CrossRef]
  52. M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005). [CrossRef]
  53. Y. Ohishi, “Novel photonics materials for broadband lightwave processing,” in Optical Components and Materials IV, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) 2007, 646908. [CrossRef]
  54. S. Sumimiya, T. Nanba, Y. Miura, and S. Sakida, “Optical Properties of Bi2O3-La2O3-Al2O3-B2O3 Glasses,” in Advances in Glass and Optical Materials II (John Wiley & Sons, Inc., 2006), pp. 127–133.
  55. B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B.95(4), 801–805 (2009). [CrossRef]
  56. M. A. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria-alumina-silica glass,” Opt. Mater.32(2), 368–373 (2009). [CrossRef]
  57. J. Ren, Y. Qiao, C. Zhu, X. Jiang, and J. Qiu, “Optical amplification near 1300 nm in bismuth-doped strontium germanate glass,” J. Opt. Soc. Am. B24(10), 2597–2600 (2007). [CrossRef]
  58. M. Qian, C. Yu, J. Cheng, K. Li, and L. Hu, “The broadband NIR emission properties of Bi doped La2O3–Al2O3–SiO2 glass,” J. Lumin.132(10), 2634–2638 (2012). [CrossRef]
  59. Y. Kim, J. H. Baeck, M.-H. Cho, E. J. Jeong, and D.-H. Ko, “Effects of N2+ ion implantation on phase transition in Ge2Sb2Te5 films,” J. Appl. Phys.100(8), 083502 (2006). [CrossRef]
  60. N. Tohge, T. Minami, Y. Yamamoto, and M. Tanaka, “Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge-Bi-Se,” J. Appl. Phys.51(2), 1048–1053 (1980). [CrossRef]
  61. J. Málek, J. Klikorka, L. Beneš, L. Tichý, and A. Tříska, “Electrical and optical properties of Ge20Sb15−xBixBi65 glasses,” J. Mater. Sci.21(2), 488–492 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited