OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8205–8213

Improving vector vortex waveplates for high-contrast coronagraphy

Sarik R. Nersisyan, Nelson V. Tabiryan, Dimitri Mawet, and Eugene Serabyn  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8205-8213 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1116 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Vector vortex waveplates (VVWs) open the door to new techniques in stellar coronagraphy and optical communications, but the performance of currently available liquid-crystal-polymer-based VVWs tends to be limited by defects in the axial region of the vortex pattern. As described here, several steps allow for a reduction in the size of such axial defects, including the use of photoalignment materials with high photosensitivity and reversible response, and a reduction in exposure energy. Moreover, redistributing the writing beam’s intensity from the axial region to its periphery (using a VVW) allows the production of large area VVWs with a small defect area. Finally, using VVWs as linear to axial polarization converters allows producing VVWs of higher topological charge, while also reducing the photoalignment time to a few minutes. These steps have allowed the fabrication of VVWs with topological charges of 1 and 2 with central defect sizes below 3 μm.

© 2013 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

Original Manuscript: February 7, 2013
Revised Manuscript: March 21, 2013
Manuscript Accepted: March 21, 2013
Published: March 28, 2013

Sarik R. Nersisyan, Nelson V. Tabiryan, Dimitri Mawet, and Eugene Serabyn, "Improving vector vortex waveplates for high-contrast coronagraphy," Opt. Express 21, 8205-8213 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Mawet, N. Murakami, C. Delacroix, E. Serabyn, O. Absil, N. Baba, J. Baudrand, A. Boccaletti, R. Burruss, R. Chipman, P. Forsberg, S. Habraken, S. Hamaguchi, C. Hanot, A. Ise, M. Karlsson, B. Kern, J. Krist, A. Kuhnert, M. Levine, K. Liewer, S. McClain, S. McEldowney, B. Mennesson, D. Moody, H. Murakami, A. Niessner, J. Nishikawa, N. O’Brien, K. Oka, P. Park, P. Piron, L. Pueyo, P. Riaud, M. Sakamoto, M. Tamura, J. Trauger, D. Shemo, J. Surdej, N. Tabirian, W. Traub, J. Wallace, and K. Yokochi, “Taking the vector vortex coronagraph to the next level for ground- and space-based exoplanet imaging instruments: review of technology developments in the USA, Japan, and Europe,” Proc. SPIE8151, 8–22 (2011). [CrossRef]
  2. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett.88(22), 221102 (2006). [CrossRef]
  3. N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of Diffractive Waveplates,” Opt. and Photon. News21, 41–45 (2010).
  4. http://www.openchannelsoftware.com/projects/PROPER
  5. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996). [CrossRef] [PubMed]
  6. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoaligning: Physics and Applications in Liquid Crystal Devices (Wiley VCH, 2008).
  7. S. C. McEldowney, D. M. Shemo, R. A. Chipman, and P. K. Smith, “Creating vortex retarders using photoaligned liquid crystal polymers,” Opt. Lett.33(2), 134–136 (2008). [CrossRef] [PubMed]
  8. N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of IEEE Aerospace Conference (IEEE, 2012), pp. 1–12. DOI . [CrossRef]
  9. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express17(14), 11926–11934 (2009). [CrossRef] [PubMed]
  10. P. G. de Gennes, “The physics of liquid crystals,” Clarendon Press, 1977.
  11. K. L. Marshall, M. Vargas, A. Gnolek, M. Statt, C. Dorrer, and S.-H. Chen, “Photo-aligned liquid crystal devices for high-peak-power laser applications,” Proc. SPIE8475, 84750U, 84750U-14 (2012). [CrossRef]
  12. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater.18(01), 1–47 (2009). [CrossRef]
  13. S. R. Nersisyan, B. R. Kimball, D. M. Steeves, and N. V. Tabiryan, “Technology of Diffractive Waveplates for Polarizer-Free Displays,” IMID/IDMC/ASIA DISPLAY 2010 DIGEST, pp. 277–278.
  14. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express19(5), 4085–4090 (2011). [CrossRef] [PubMed]
  15. B. Kimball, D. Steeves, L. Hoke, R. Osgood, J. Carlson, L. Belton, N. Tabiryan, S. Nersisyan, S. Serak, U. Hrozhyk, M. Geis, and T. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference, Orlando, Florida, November 29-December 2, 2010, pp.1–7. Online at http://dodreports.com/ada533466 .
  16. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE7775, 77750U (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited