OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8251–8260

Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides

Till Leißner, Christoph Lemke, Stephan Jauernik, Mathias Müller, Jacek Fiutowski, Luciana Tavares, Kasper Thilsing-Hansen, Jakob Kjelstrup-Hansen, Olaf Magnussen, Horst-Günter Rubahn, and Michael Bauer  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8251-8260 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2105 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Plasmonic wave packet propagation is monitored in dielectric-loaded surface plasmon polariton waveguides realized from para-hexaphenylene nanofibers deposited onto a 60 nm thick gold film. Using interferometric time resolved two-photon photoemission electron microscopy we are able to determine phase and group velocity of the surface plasmon polariton (SPP) waveguiding mode (0.967c and 0.85c at λLaser = 812nm) as well as the effective propagation length (39 μm) along the fiber-gold interface. We furthermore observe that the propagation properties of the SPP waveguiding mode are governed by the cross section of the waveguide.

© 2013 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(240.6680) Optics at surfaces : Surface plasmons
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7080) Ultrafast optics : Ultrafast devices
(250.5403) Optoelectronics : Plasmonics
(240.6675) Optics at surfaces : Surface photoemission and photoelectron spectroscopy

ToC Category:
Optics at Surfaces

Original Manuscript: December 21, 2012
Revised Manuscript: February 14, 2013
Manuscript Accepted: February 14, 2013
Published: March 28, 2013

Till Leißner, Christoph Lemke, Stephan Jauernik, Mathias Müller, Jacek Fiutowski, Luciana Tavares, Kasper Thilsing-Hansen, Jakob Kjelstrup-Hansen, Olaf Magnussen, Horst-Günter Rubahn, and Michael Bauer, "Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides," Opt. Express 21, 8251-8260 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–93 (2006). [CrossRef] [PubMed]
  4. N. J. Halas, “Plasmonics: an emerging field fostered by Nano Letters,” Nano Lett. 10, 3816–3822 (2010). [CrossRef] [PubMed]
  5. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today 61, 44 (2008). [CrossRef]
  6. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–32 (2009). [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–11 (2006). [CrossRef] [PubMed]
  8. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3, 660–5 (2008). [CrossRef] [PubMed]
  9. A. Krasavin and A. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008). [CrossRef]
  10. J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008). [CrossRef]
  11. N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metaldielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ?m,” IEEE J. Quantum. Electron. 43, 479–485 (2007). [CrossRef]
  12. J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011). [CrossRef]
  13. T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007). [CrossRef]
  14. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10, 4851–4857 (2010). [CrossRef]
  15. J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010). [CrossRef]
  16. T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78 (2008). [CrossRef]
  17. T. Holmgaard, Z. Chen, S. I. I. Bozhevolnyi, A. Dereux, N. B. All, and L. Markey, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17, 2968–2975 (2009). [CrossRef] [PubMed]
  18. K. H. Al-Shamery, H. G. Rubahn, and H. Sitter, eds., Organic Nanostructures for Next Generation Devices (Springer-Verlag, 2008). [CrossRef]
  19. I. P. Radko, J. Fiutowski, L. Tavares, H.-G. Rubahn, and S. I. Bozhevolnyi, “Organic nanofiber-loaded surface plasmon-polariton waveguides,” Opt. Express 19, 15155 (2011). [CrossRef] [PubMed]
  20. F. Balzer, V. Bordo, A. Simonsen, and H.-G. Rubahn, “Optical waveguiding in individual nanometer-scale organic fibers,” Phys. Rev. B 67, 115408 (2003). [CrossRef]
  21. F. Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, and H.-G. Rubahn, “One-dimensional random lasing in a single organic nanofiber,” J. Phys. Chem. B 109, 21690–3 (2005). [CrossRef]
  22. F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, “Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,” Appl. Phys. Lett. 84, 4454 (2004). [CrossRef]
  23. J. Beermann, S. I. Bozhevolnyi, V. G. Bordo, and H.-G. Rubahn, “Two-photon mapping of local molecular orientations in hexaphenyl nanofibers,” Opt. Commun. 237, 423–429 (2004). [CrossRef]
  24. T. Leißner, K. Thilsing-Hansen, C. Lemke, S. Jauernik, J. Kjelstrup-Hansen, M. Bauer, and H.-G. Rubahn, “Surface plasmon polariton emission prompted by organic nanofibers on thin gold films,” Plasmonics 7, 253–260 (2012). [CrossRef]
  25. F. Balzer, J. Beermann, S. I. Bozhevolnyi, A. C. Simonsen, and H.-G. Rubahn, “Optically active organic microrings,” Nano Lett. 3, 1311–1314 (2003). [CrossRef]
  26. M. Schiek, F. Balzer, K. Al-Shamery, A. Lützen, and H.-G. Rubahn, “Light-emitting organic nanoaggregates from functionalized p-quaterphenylenes,” Soft Matter 4, 277 (2008). [CrossRef]
  27. F.-J. Meyer zu Heringdorf, L. Chelaru, S. Möllenbeck, D. Thien, and M. Horn-von Hoegen, “Femtosecond photoemission microscopy,” Surf. Sci. 601, 4700–4705 (2007). [CrossRef]
  28. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film.” Nano Lett. 5, 1123–7 (2005). [CrossRef] [PubMed]
  29. A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett. 7, 470–5 (2007). [CrossRef] [PubMed]
  30. M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, “Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy,” Appl. Phys. A: Mater. Sci. Process. 88, 473–480 (2007). [CrossRef]
  31. W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Frömter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom. 84, 171–188 (1997). [CrossRef]
  32. M. U. Wehner, M. H. Ulm, and M. Wegener, “Scanning interferometer stabilized by use of Pancharatnam’s phase,” Opt. Lett. 22, 1455–1457 (1997). [CrossRef]
  33. M. Müller, Y. Gonzalez-Garcia, C. Pakula, V. Zaporojtchenko, T. Strunskus, F. Faupel, R. Herges, D. Zargarani, and O. Magnussen, “In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films,” Appl. Surf. Sci. 257, 7719–7726 (2011). [CrossRef]
  34. F. Balzer and H.-G. Rubahn, “Dipole-assisted self-assembly of light-emitting p-nP needles on mica,” Appl. Phys. Lett. 79, 3860 (2001). [CrossRef]
  35. L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small 7, 2460–2463 (2011).
  36. K. Thilsing-Hansen and H.-G. Rubahn, “Storage and transfer of organic nanofibers,” European Patent EP2111655 (2008).
  37. T. Tamulevi?ius, A. Šileikait, S. Tamulevi?ius, M. Madsen, and H.-G. Rubahn, “Scanning electron microscopy of semiconducting nanowires at low voltages,” Mater Sci-Medzg 15, 86–90 (2009).
  38. H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997). [CrossRef]
  39. L. I. Chelaru and F.-J. Meyer zu Heringdorf, “In situ monitoring of surface plasmons in single-crystalline Ag-nanowires,” Surf. Sci. 601, 4541–4545 (2007). [CrossRef]
  40. C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express 20, 12877 (2012). [CrossRef] [PubMed]
  41. M. Schiek, A. Lützen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, and H. G. Rubahn, “Nanofibers from functionalized para-phenylene molecules,” Appl. Phys. Lett. 86, 153107 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (9746 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited