OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8331–8341

Manifestation of the Gouy phase in strongly focused, radially polarized beams

Xiaoyan Pang and Taco D. Visser  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8331-8341 (2013)
http://dx.doi.org/10.1364/OE.21.008331


View Full Text Article

Enhanced HTML    Acrobat PDF (1611 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Gouy phase, sometimes called the focal phase anomaly, is the curious effect that in the vicinity of its focus a diffracted field, compared to a non-diffracted, converging spherical wave of the same frequency, undergoes a rapid phase change by an amount of π. We theoretically investigate the phase behavior and the polarization ellipse of a strongly focused, radially polarized beam. We find that the significant variation of the state of polarization in the focal region, is a manifestation of the different Gouy phases that the two electric field components undergo.

© 2013 OSA

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: February 5, 2013
Revised Manuscript: March 19, 2013
Manuscript Accepted: March 21, 2013
Published: March 28, 2013

Citation
Xiaoyan Pang and Taco D. Visser, "Manifestation of the Gouy phase in strongly focused, radially polarized beams," Opt. Express 21, 8331-8341 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-8331


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. G. Gouy, “Sur une propriété nouvelle des ondes lumineuses,” Comptes Rendus hebdomadaires des Séances de l’Académie des Sciences 110, 1251–1253 (1890).
  2. L. G. Gouy, “Sur la propagation anomale des ondes,” Annales des Chimie et de Physique 6eséries 24, 145–213 (1891).
  3. S. M. Baumann, D. M. Kalb, and E. J. Galvez, “Propagation dynamics of optical vortices due to Gouy phase,” Opt. Express 17, 9818–9827 (2009). [CrossRef] [PubMed]
  4. G. M. Philip, V. Kumar, G. Milione, and N. K. Viswanathan, “Manifestation of the Gouy phase in vector-vortex beams,” Opt. Lett. 37, 2667–2669 (2012). [CrossRef] [PubMed]
  5. W. Zhu, A. Agrawal, and A. Nahata, “Direct measurement of the Gouy phase shift for surface plasmon-polaritons,” Opt. Express 15, 9995–10001 (2007). [CrossRef] [PubMed]
  6. T. D. Visser and E. Wolf, “The origin of the Gouy phase anomaly and its generalization to astigmatic wavefields,” Opt. Commun. 283, 3371–3375 (2010). [CrossRef]
  7. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  8. G. Lamouche, M. L. Dufour, B. Gauthier, and J.-P. Monchalin, “Gouy phase anomaly in optical coherence tomography,” Opt. Commun. 239, 297–301 (2004). [CrossRef]
  9. T. Klaassen, A. Hoogeboom, M. P. van Exter, and J. P. Woerdman, “Gouy phase of nonparaxial eigenmodes in a folded resonator,” J. Opt. Soc. Am. A 21, 1689–1693 (2004). [CrossRef]
  10. X. Pang, D. G. Fischer, and T. D. Visser, “A generalized Gouy phase for focused partially coherent light and its implications for interferometry,” J. Opt. Soc. Am. A 29, 989–993. (2012). [CrossRef]
  11. X. Pang, T. D. Visser, and E. Wolf, “Phase anomaly and phase singularities of the field in the focal region of high-numerical aperture systems,” Opt. Commun. 284, 5517–5522 (2011). [CrossRef]
  12. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef] [PubMed]
  13. R. Martínez-Herrero and P. M. Mejías, “Propagation and parametric characterization of the polarization structure of paraxial radially and azimuthally polarized beams,” Opt. Laser Techn. 44, 482–485 (2012). [CrossRef]
  14. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  15. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001). [CrossRef] [PubMed]
  16. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004). [CrossRef] [PubMed]
  17. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004). [CrossRef] [PubMed]
  18. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33, 122–124 (2008). [CrossRef] [PubMed]
  19. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt. 45, 470–479 (2006). [CrossRef] [PubMed]
  20. T. G. Brown, “Unconventional polarization states: Beam propagation, focusing, and imaging,” in Progress in Optics, E. Wolf, eds. (Elsevier, 2011), 56, pp. 81–129. [CrossRef]
  21. T. D. Visser and J. T. Foley, “On the wavefront spacing of focused, radially polarized beams,” J. Opt. Soc. Am. A 22, 2527–2531 (2005). [CrossRef]
  22. H. Chen, Q. Zhan, Y. Zhang, and Y.-P. Li, “The Gouy phase shift of the highly focused radially polarized beam,” Phys. Lett. A 371, 259–261 (2007). [CrossRef]
  23. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Structure of the image field in aplanatic systems,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  24. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Seventh (expanded) edition, (Cambridge University Press, 1999).
  25. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1965).
  26. R.W. Schoonover and T.D. Visser, “Polarization singularities of focused, radially polarized fields,” Opt. Express 14, 5733–5745 (2006). [CrossRef] [PubMed]
  27. R. Martínez-Herrero and P.M. Mejías, “Stokes-parameters representation in terms of the radial and azimuthal field components: A proposal,” Opt. Laser Techn. 42, 1099–1102 (2010). [CrossRef]
  28. G.J. Gbur, Mathematical Methods for Optical Physics and Engineering (Cambridge University Press, Cambridge, 2011), pp. 91–93.
  29. D.W. Diehl, R.W. Schoonover, and T.D. Visser, “The structure of focused, radially polarized fields,” Opt. Express 14, 3030–3038 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited