OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8357–8370

Polarization sensitive ultrafast mid-IR pump probe micro-spectrometer with diffraction limited spatial resolution

M. Kaucikas, J. Barber, and J. J. Van Thor  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8357-8370 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A setup of ultrafast transient infrared IR spectrometer is described in this paper that employed Schwarzschild objectives to focus the probe beam to a diffraction limited spot. Thus measurements were performed with very high spatial resolution in the mid-IR spectral region. Furthermore, modulating the polarization of the probe light enabled detecting transient dichroism of the sample. These capabilities of the setup were applied to study transient absorption of Photosystem II core complex and to image an organized film of methylene blue chloride dye. Moreover, a study of noise sources in a pump probe measurement is presented. The predicted noise level of the current setup was 8.25 μOD in 104 acquisitions and compared very well with the experimental observation of 9.6 μOD.

© 2013 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(100.0118) Image processing : Imaging ultrafast phenomena

ToC Category:

Original Manuscript: November 8, 2012
Revised Manuscript: January 10, 2013
Manuscript Accepted: January 10, 2013
Published: March 29, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

M. Kaucikas, J. Barber, and J. J. Van Thor, "Polarization sensitive ultrafast mid-IR pump probe micro-spectrometer with diffraction limited spatial resolution," Opt. Express 21, 8357-8370 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague, T. Lian, and A. J. Nozik, “Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru (4, 4’-dicarboxy-2, 2'-bipyridine) 2 (NCS) 2] by infrared transient absorption,” J. Phys. Chem. B102(34), 6455–6458 (1998). [CrossRef]
  2. J. Asbury, R. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, and T. Lian, “Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru (dcbpy) 2 (NCS) 2 in solution and on nanocrystalline TiO2 and Al2O3 thin films,” J. Phys. Chem. B103(16), 3110–3119 (1999). [CrossRef]
  3. J. J. van Thor, G. Y. Georgiev, M. Towrie, and J. T. Sage, “Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein,” J. Biol. Chem.280(39), 33652–33659 (2005). [CrossRef] [PubMed]
  4. N. P. Pawlowicz, M.-L. Groot, I. H. M. van Stokkum, J. Breton, and R. van Grondelle, “Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy,” Biophys. J.93(8), 2732–2742 (2007). [CrossRef] [PubMed]
  5. P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21 (2003). [CrossRef]
  6. G. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619 (2001). [CrossRef]
  7. H. A. Bechtel, M. C. Martin, T. E. May, and P. Lerch, “Improved spatial resolution for reflection mode infrared microscopy,” Rev. Sci. Instrum.80(12), 126106 (2009). [CrossRef] [PubMed]
  8. L. M. Miller and R. J. Smith, “Synchrotrons versus globars, point-detectors versus focal plane arrays: Selecting the best source and detector for specific infrared microspectroscopy and imaging applications,” Vib. Spectrosc.38(1-2), 237–240 (2005). [CrossRef]
  9. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron.38(6), 582–591 (2002). [CrossRef]
  10. J. Manne, O. Sukhorukov, W. Jäger, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath,” Appl. Opt.45(36), 9230–9237 (2006). [CrossRef] [PubMed]
  11. M. Weida and B. Yee, “Quantum cascade laser-based replacement for FTIR microscopy,” in SPIE BiOS (2011), p. 79021C–79021C.
  12. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ~19 to 45 μmin ZBLAN fiber with high average power generation beyond 38 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28(10), 2486–2498 (2011). [CrossRef]
  13. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express20(5), 4887–4892 (2012). [CrossRef] [PubMed]
  14. P. Hamm, R. A. Kaindl, and J. Stenger, “Noise suppression in femtosecond mid-infrared light sources,” Opt. Lett.25(24), 1798–1800 (2000). [CrossRef] [PubMed]
  15. G. M. Greetham, P. Burgos, Q. Cao, I. P. Clark, P. S. Codd, R. C. Farrow, M. W. George, M. Kogimtzis, P. Matousek, A. W. Parker, M. R. Pollard, D. A. Robinson, Z. J. Xin, and M. Towrie, “ULTRA: A unique instrument for time-resolved spectroscopy,” Appl. Spectrosc.64(12), 1311–1319 (2010). [CrossRef] [PubMed]
  16. M. Towrie, D. C. Grills, J. Dyer, J. A. Weinstein, P. Matousek, R. Barton, P. D. Bailey, N. Subramaniam, W. M. Kwok, C. Ma, D. Phillips, A. W. Parker, and M. W. George, “Development of a broadband picosecond infrared spectrometer and its incorporation into an existing ultrafast time-resolved resonance Raman, UV/visible, and fluorescence spectroscopic apparatus,” Appl. Spectrosc.57(4), 367–380 (2003). [CrossRef] [PubMed]
  17. R. P. S. M. Lobo, J. D. LaVeigne, D. H. Reitze, D. B. Tanner, and G. L. Carr, “Subnanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation,” Rev. Sci. Instrum.73(1), 1–10 (2002). [CrossRef]
  18. L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011). [CrossRef] [PubMed]
  19. B. Wybourne, “Optimum optical density for shot noise limited spectrophotometers,” J. Opt. Soc. Am.50(1), 84–85 (1960). [CrossRef]
  20. R. Cole, “Optimum optical density in spectrophotometry,” J. Opt. Soc. Am.41(1), 38–40 (1951). [CrossRef]
  21. L. D. Rothman, S. R. Crouch, and J. D. Ingle, “Theoretical and experimental investigation of factors affecting precision in molecular absorption spectrophotometry,” Anal. Chem.47(8), 1226–1233 (1975). [CrossRef]
  22. H. Mark and J. Workman, Chemometrics in Spectroscopy (Academic Press, 2007).
  23. G. Moore and K. Koch, “Phasing of tandem crystals for nonlinear optical frequency conversion,” Opt. Commun.124(3-4), 292–294 (1996). [CrossRef]
  24. C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum.79(1), 013107 (2008). [CrossRef] [PubMed]
  25. A. L. Dobryakov, S. A. Kovalenko, A. Weigel, J. L. Pérez-Lustres, J. Lange, A. Müller, and N. P. Ernsting, “Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing,” Rev. Sci. Instrum.81(11), 113106 (2010). [CrossRef] [PubMed]
  26. A. G. P. Julius and S. Bendat, Random Data: Analysis and Measurement Procedures (Wiley, 2011).
  27. D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum.78(10), 103108 (2007). [CrossRef] [PubMed]
  28. P. M. T. Broersen, “Estimation of the accuracy of mean and variance of correlated data,” IEEE Trans. Instrum. Meas.47(5), 1085–1091 (1998). [CrossRef]
  29. L. J. G. W. van Wilderen, C. N. Lincoln, and J. J. van Thor, “Modelling multi-pulse population dynamics from ultrafast spectroscopy,” PLoS ONE6(3), e17373 (2011). [CrossRef] [PubMed]
  30. L. Wong, C. Hu, R. Paradise, Z. Zhu, A. Shtukenberg, and B. Kahr, “Relationship between tribology and optics in thin films of mechanically oriented nanocrystals,” J. Am. Chem. Soc.134(29), 12245–12251 (2012). [CrossRef] [PubMed]
  31. E. Sáez and R. Corn, “In situ polarization modulation—Fourier transform infrared spectroelectrochemistry of phenazine and phenothiazine dye films at polycrystalline gold electrodes,” Electrochim. Acta38(12), 1619–1625 (1993). [CrossRef]
  32. O. V. Ovchinnikov, S. V. Chernykh, M. S. Smirnov, D. V. Alpatova, R. P. Vorob’eva, N. Latyshev, B. Evlev, N. Utekhin, and N. Lukin, “Analysis of interaction between the organic dye methylene blue and the surface of AgCl(I) microcrystals,” J. Appl. Spectrosc.74(6), 809–816 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited