OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8382–8392

Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber

Thierry Deschamps, Hervé Vezin, Cédric Gonnet, and Nadège Ollier  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8382-8392 (2013)
http://dx.doi.org/10.1364/OE.21.008382


View Full Text Article

Enhanced HTML    Acrobat PDF (1777 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a combination of experimental techniques such as optical absorption, Raman scattering, continuous wave and pulse Electron Spin Resonance (ESR), we characterize a set of γ-irradiated Yb3+ doped silica glass preforms with different contents of phosphorous and aluminum. We demonstrate that when P is introduced in excess compared to Al, nearly no radiodarkening is induced by γ-rays. On the other hand, when Al>P, a large absorption band is induced by radiation. Thermal annealing experiments reveal the correlation between the decrease of the optical absorption band and the decrease of the Al-Oxygen Hole Center (AlOHC) ESR signal, demonstrating the main role of AlOHC defects in the fiber darkening. HYSCORE (HYperfine Sublevel CORElation) pulse-ESR experiments show a high Al-P nuclear spin coupling when P>Al and no coupling when Al>P. This result suggests that both AlOHC and POHC creation is inhibited by Al-O-P linkages. Confronting our data with previous works, we show that the well-known photodarkening process, meaning losses induced by the IR pump, can also be explained in this framework.

© 2013 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(160.2220) Materials : Defect-center materials
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(140.3615) Lasers and laser optics : Lasers, ytterbium
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 27, 2012
Revised Manuscript: February 18, 2013
Manuscript Accepted: February 19, 2013
Published: March 29, 2013

Citation
Thierry Deschamps, Hervé Vezin, Cédric Gonnet, and Nadège Ollier, "Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber," Opt. Express 21, 8382-8392 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-8382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Moses, “Multi-megajoule NIF: ushering in a new era in high density science,” Proc. SPIE7005, 70050F, 70050F-11 (2008). [CrossRef]
  2. S. Girard, J. Baggio, J. L. Leray, J. P. Meunier, A. Boukenter, and Y. Ouerdane, “Laser megajoule CEA vulnerability analysis of optical fibers for laser megajoule facility: preliminary studies,” IEEE Trans. Nucl. Sci.52(5), 1497–1503 (2005). [CrossRef]
  3. J. Ma, M. Li, L. Tan, Y. Zhou, S. Yu, and Q. Ran, “Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment,” Opt. Express17(18), 15571–15577 (2009). [CrossRef] [PubMed]
  4. Y. Ouerdane, S. Girard, B. Tortech, T. Robin, C. Marcandella, A. Boukenter, B. Cadier, J. P. Meunier, and P. Crochet, “Vulnerability of rare-earth-doped fibers for space missions: origins of radiation-induced attenuation,” Proc. SPIE7316(731617), 731617, 731617-9 (2009). [CrossRef]
  5. W. Li and M. Lu, “The effect of added O2 on the transmittance and radiation resistance of radiation resistant glasses,” Opt. Express18(25), 26307–26312 (2010). [CrossRef] [PubMed]
  6. M. Vivona, S. Girard, C. Marcandella, T. Robin, B. Cadier, M. Cannas, A. Boukenter, and Y. Ouerdane, “Influence of Ce codoping and H2 pre-loading on Er/Yb-doped fiber: Radiation response characterized by confocal micro-luminescence,” J. Non-Cryst. Solids357(8–9), 1963–1965 (2011). [CrossRef]
  7. S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, and Y. Ouerdane, “Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application,” Opt. Express20(8), 8457–8465 (2012). [CrossRef] [PubMed]
  8. Y. Sheng, L. Yang, H. Luan, Z. Liu, Y. Yu, J. Li, and N. Dai, “Improvement of radiation resistance by introducing CeO2 in Yb-doped silicate glasses,” J. Nucl. Mater.427(1–3), 58–61 (2012). [CrossRef]
  9. K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminium or phosphorous co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys.59(10), 3430–3436 (1986). [CrossRef]
  10. T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet, “Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening,” J. Chem. Phys.136(1), 014503 (2012). [CrossRef] [PubMed]
  11. S. Girard, J. Baggio, and J. Bisutti, “14-MeV, γ-ray and pulse X-ray radiation-induced effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci.53(6), 3750–3757 (2006). [CrossRef]
  12. G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorous-doped optical fibers and preforms,” J. Appl. Phys.108(12), 123103 (2010). [CrossRef]
  13. M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation induced absorption in rare earth doped optical fibers,” IEEE Trans. Nucl. Sci.59(2), 425–433 (2012). [CrossRef]
  14. areB. P. Fox, Z. V. Schneider, K. Simmons-Potter, W. J. Thomes, D. C. Meister, R. P. Bambha, D. A. V. Kliner, and M. J. Söderlund, “Gamma radiation effects in Yb-doped optical fiber,” Proc. SPIE6453(645328), 645328, 645328-8 (2007). [CrossRef]
  15. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express14(24), 11539–11544 (2006). [CrossRef] [PubMed]
  16. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express15(22), 14838–14843 (2007). [CrossRef] [PubMed]
  17. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express16(2), 1260–1268 (2008). [CrossRef] [PubMed]
  18. R. Peretti, C. Gonnet, and A. M. Jurdyc, “Revisiting literature observations on photodarkening in Yb3+doped fiber considering the possible presence of Tm impurities,” J. Appl. Phys.112(9), 093511 (2012). [CrossRef]
  19. K. Médjahdi, A. Boukenter, Y. Ouerdane, F. Messina, and M. Cannas, “Ultraviolet-induced paramagnetic centers and absorption changes in singlemode Ge-doped optical fibers,” Opt. Express14(13), 5885–5894 (2006). [CrossRef] [PubMed]
  20. D. L. Griscom, “On the nature of radiation-induced point defects in GeO2-SiO2 glasses: reevaluation of a 26-year-old ESR and optical data set,” Opt. Mater. Express1(3), 400–412 (2011). [CrossRef]
  21. K. L. Brower, “Electron paramagnetic resonance of Al E1’centers in vitreous silica,” Phys. Rev. B20(5), 1799–1811 (1979). [CrossRef]
  22. K. Chah, B. Boizot, B. Reynard, D. Ghaleb, and G. Petite, “Micro-Raman and EPR studies of β-radiation damages in aluminosilicate glasses,” Nucl. Inst. and Meth. in Phys. Res. B191(1–4), 337–341 (2002).
  23. F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B27(10), 6199–6204 (1983). [CrossRef]
  24. A. Alessi, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Phosphorous doping and drawing effects on the Raman spectroscopic properties of O = P bond in silica-based fiber and preform,” Opt. Mater. Express2(10), 1391–1396 (2012). [CrossRef]
  25. V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, and E. M. Dianov, “On the structure of phosphosilicate glasses,” J. Non-Cryst. Solids306(3), 209–226 (2002). [CrossRef]
  26. B. G. Aitken, R. E. Youngman, R. R. Deshpande, and H. Eckert, “Structure−property relations in mixed-network glasses: multinuclear solid state NMR investigations of the system xAl2O3:(30 − x)P2O5:70SiO2,” J. Phys. Chem. C113(8), 3322–3331 (2009). [CrossRef]
  27. R. Peretti, A. M. Jurdyc, B. Jacquier, W. Blanc, and B. Dussardier, “Spectroscopic signature of phosphate crystallization in Erbium-doped optical fibre preforms,” Opt. Mater.33(6), 835–838 (2011). [CrossRef]
  28. A. Saitoh, S. Matsuishi, C. Se-Weon, J. Nishii, M. Oto, M. Hirano, and H. Hosono, “Elucidation of codoping effects on the solubility enhancement of Er3+ in SiO2 glass: striking difference between Al and P codoping,” J. Phys. Chem. B110(15), 7617–7620 (2006). [CrossRef] [PubMed]
  29. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and optical fibers,” J. Appl. Phys.54(7), 3743–3762 (1983). [CrossRef]
  30. D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids357(8–9), 1945–1962 (2011). [CrossRef]
  31. A. Saitoh, S. Matsuishi, C. Se-Weon, J. Nishii, M. Oto, M. Hirano, and H. Hosono, “Elucidation of codoping effects on the solubility enhancement of Er3+ in SiO2 glass: striking difference between Al and P codoping,” J. Phys. Chem. B110(15), 7617–7620 (2006). [CrossRef] [PubMed]
  32. A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S. J. L. Ribeiro, Y. Messaddeq, A. Chiasera, and M. Ferrari, “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” J. Non-Cryst. Solids348, 44–50 (2004). [CrossRef]
  33. J. Du, L. Kokou, J. L. Rygel, Y. Chen, C. G. Pantano, R. Woodman, and J. Belcher, “Structure of cerium phosphate glasses: molecular dynamics simulation,” J. Am. Ceram. Soc.94(8), 2393–2401 (2011). [CrossRef]
  34. M. Engholm, L. Norin, and D. Aberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett.32(22), 3352–3354 (2007). [CrossRef] [PubMed]
  35. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express16(20), 15540–15545 (2008). [CrossRef] [PubMed]
  36. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett.32(12), 1626–1628 (2007). [CrossRef] [PubMed]
  37. I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express15(4), 1606–1611 (2007). [CrossRef] [PubMed]
  38. P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect luminescence in Yb doped silica fibers: part I NBOHC,” Opt. Express16(7), 4688–4697 (2008). [CrossRef] [PubMed]
  39. A. D. Guzman Chávez, A. V. Kir’yanov, Y. O. Barmenkov, and N. N. Il’ichev, “Reversible photo-darkening and resonant photo-bleaching of Ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett.4(10), 734–739 (2007). [CrossRef]
  40. F. Mady, M. Benabdesselam, and W. Blanc, “Thermoluminescence characterization of traps involved in the photodarkening of ytterbium-doped silica fibers,” Opt. Lett.35(21), 3541–3543 (2010). [CrossRef] [PubMed]
  41. M. Leich, U. Röpke, S. Jetschke, S. Unger, V. Reichel, and J. Kirchhof, “Non-isothermal bleaching of photodarkened Yb-doped fibers,” Opt. Express17(15), 12588–12593 (2009). [CrossRef] [PubMed]
  42. K. E. Mattsson, “Photo darkening of rare earth doped silica,” Opt. Express19(21), 19797–19812 (2011). [CrossRef] [PubMed]
  43. H. Gebavi, S. Taccheo, D. Milanese, A. Monteville, O. Le Goffic, D. Landais, D. Mechin, D. Tregoat, B. Cadier, and T. Robin, “Temporal evolution and correlation between cooperative luminescence and photodarkening in ytterbium doped silica fibers,” Opt. Express19(25), 25077–25083 (2011). [CrossRef] [PubMed]
  44. R. Peretti, A. M. Jurdyc, B. Jacquier, C. Gonnet, A. Pastouret, E. Burov, and O. Cavani, “How do traces of thulium explain photodarkening in Yb doped fibers?” Opt. Express18(19), 20455–20460 (2010). [CrossRef] [PubMed]
  45. S. Jetschke, M. Leich, S. Unger, A. Schwuchow, and J. Kirchhof, “Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers,” Opt. Express19(15), 14473–14478 (2011). [CrossRef] [PubMed]
  46. S. Jetschke, S. Unger, M. Leich, and J. Kirchhof, “Photodarkening kinetics as a function of Yb concentration and the role of Al codoping,” Appl. Opt.51(32), 7758–7764 (2012). [CrossRef] [PubMed]
  47. R. Peretti, C. Gonnet, and A. M. Jurdyc, “A new vision of photodarkening in Yb3+-doped fibers,” Proc. SPIE8257, 825705, 825705-7 (2012). [CrossRef]
  48. H. Gebavi, S. Taccheo, L. Lablonde, B. Cadier, T. Robin, D. Méchin, and D. Tregoat, “Mitigation of photodarkening phenomenon in fiber lasers by 633 nm light exposure,” Opt. Lett.38(2), 196–198 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited