OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8426–8436

Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures

Jingjing Zhang and Anatoly Zayats  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8426-8436 (2013)
http://dx.doi.org/10.1364/OE.21.008426


View Full Text Article

Enhanced HTML    Acrobat PDF (2407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiple plasmonic Fano resonances are generally considered to require complex nanostructures, such as multilayer structure, to provide several dark modes that can couple with the bright mode. In this paper, we show the existence of multiple Fano resonances in single layer core-shell nanostructures where the multiple dark modes appear due to the geometrical symmetry breaking induced by axial offset of the core. Both dielectric-core-metal-shell (DCMS) and metal-core-dielectric-shell (MCDS) configurations have been studied. Compared to the MCDS structure, the DCMS configuration provides higher modulation depth. Analytical studies based on transformation optics and numerical simulations have been performed to investigate the role of geometrical and material parameters on the optical properties of the proposed nanostructures. Refractive index sensing with higher-order Fano resonances has also been described, providing opportunity for multiwavelength sensing with high figure of merit.

© 2013 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 14, 2013
Revised Manuscript: March 4, 2013
Manuscript Accepted: March 4, 2013
Published: March 29, 2013

Citation
Jingjing Zhang and Anatoly Zayats, "Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures," Opt. Express 21, 8426-8436 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-8426


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt.5(4), S16–S50 (2003). [CrossRef]
  2. J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science337(6094), 549–552 (2012). [CrossRef] [PubMed]
  3. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010). [CrossRef] [PubMed]
  4. Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett.10(10), 4186–4191 (2010). [CrossRef] [PubMed]
  5. A. I. Fernández-Domínguez, S. A. Maier, and J. B. Pendry, “Collection and concentration of light by touching spheres: a transformation optics approach,” Phys. Rev. Lett.105(26), 266807 (2010). [CrossRef] [PubMed]
  6. Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012). [CrossRef] [PubMed]
  7. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  8. A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011). [CrossRef] [PubMed]
  9. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  10. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett.97(14), 146804 (2006). [CrossRef] [PubMed]
  11. A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, “Nonlinear Fano resonance and bistable wave transmission,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036626 (2005). [CrossRef] [PubMed]
  12. U. Fano, “The Theory of Anomalous Diffraction Gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's Waves),” J. Opt. Soc. Am.31(3), 213–222 (1941). [CrossRef]
  13. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010). [CrossRef]
  14. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  15. F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing,” ACS Nano3(3), 643–652 (2009). [CrossRef] [PubMed]
  16. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010). [CrossRef] [PubMed]
  17. Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano6(6), 5130–5137 (2012). [CrossRef] [PubMed]
  18. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008). [CrossRef] [PubMed]
  19. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  20. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express18(16), 17187–17192 (2010). [CrossRef] [PubMed]
  21. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett.11(4), 1685–1689 (2011). [CrossRef] [PubMed]
  22. Z. Y. Fang, J. Y. Cai, Z. B. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a Fano resonance,” Nano Lett.11(10), 4475–4479 (2011). [CrossRef] [PubMed]
  23. F. López-Tejeiral, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).
  24. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010). [CrossRef] [PubMed]
  25. S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano6(7), 6260–6271 (2012). [CrossRef] [PubMed]
  26. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett.101(19), 197401 (2008). [CrossRef] [PubMed]
  27. K. C. Woo, L. Shao, H. J. Chen, Y. Liang, J. F. Wang, and H. Q. Lin, “Universal scaling and Fano resonance in the plasmon coupling between gold nanorods,” ACS Nano5(7), 5976–5986 (2011). [CrossRef] [PubMed]
  28. H. J. Chen, L. Shao, Y. C. Man, C. M. Zhao, J. F. Wang, and B. C. Yang, “Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking,” Small8(10), 1503–1509 (2012). [CrossRef] [PubMed]
  29. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010). [CrossRef] [PubMed]
  30. D. J. Wu, S. M. Jiang, and X. J. Liu, “Tunable Fano resonances in three-layered bimetallic Au and Ag nanoshell,” J. Phys. Chem. C115(48), 23797–23801 (2011). [CrossRef]
  31. C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett.108(26), 263905 (2012). [CrossRef] [PubMed]
  32. F. Monticone, C. Argyropoulos, and A. Alu, “Multi-layered plasmonic covers for comb-like scattering response and optical tagging,” Arxiv:1210.4802.
  33. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys.22(10), 1242–1246 (1951). [CrossRef]
  34. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B16(10), 1824–1832 (1999). [CrossRef]
  35. F. Tam, C. Moran, and N. J. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B108(45), 17290–17294 (2004). [CrossRef]
  36. R. Bardhan, N. K. Grady, T. Ali, and N. J. Halas, “Metallic nanoshells with semiconductor cores: Optical characteristics modified by core medium properties,” ACS Nano4(10), 6169–6179 (2010). [CrossRef] [PubMed]
  37. H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006). [CrossRef] [PubMed]
  38. J. B. Lassiter, M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett.9(12), 4326–4332 (2009). [CrossRef] [PubMed]
  39. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett.5(1), 119–124 (2005). [CrossRef] [PubMed]
  40. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  41. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003). [CrossRef] [PubMed]
  42. M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B72(11), 115113 (2005). [CrossRef]
  43. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011). [CrossRef] [PubMed]
  44. F. Borghese, P. Denti, R. Saija, and O. I. Sindoni, “Optical properties of spheres containing a spherical eccentric inclustion,” J. Opt. Soc. Am. A9(8), 1327–1335 (1992). [CrossRef]
  45. N. C. Skaropoulos, M. P. Ioannidou, and D. P. Chrissoulidis, “Indirect mode-matching solution to scattering from a dielectric sphere with an eccentric inclusion,” J. Opt. Soc. Am. A11(6), 1859–1866 (1994). [CrossRef]
  46. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities,” J. Opt. Soc. Am. A12(5), 893–904 (1995). [CrossRef]
  47. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett.105(23), 233901 (2010). [CrossRef] [PubMed]
  48. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Conformal transformation applied to plasmonics beyond the quasistatic limit,” Phys. Rev. B82(20), 205109 (2010). [CrossRef]
  49. J. A. Kong, Electromagnetic Wave Theory, II (Wiley, 1990).
  50. A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett.12(11), 5946–5953 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited