OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8437–8443

Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber

A. Kudlinski, A. Bendahmane, D. Labat, S. Virally, R. T. Murray, E. J. R. Kelleher, and A. Mussot  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8437-8443 (2013)
http://dx.doi.org/10.1364/OE.21.008437


View Full Text Article

Enhanced HTML    Acrobat PDF (1803 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the experimental observation of scalar and cross-phase modulation instabilities by pumping a highly birefringent photonic crystal fiber in the normal dispersion regime at 45° to its principal polarization axes. Five sideband pairs (two scalar and three vector ones) are observed simultaneously in the spontaneous regime, four of which have a large frequency shift from the pump, in the range 79-93 THz. These results are in excellent agreement with phase-matching arguments and numerical simulations.

© 2013 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 5, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 17, 2013
Published: March 29, 2013

Citation
A. Kudlinski, A. Bendahmane, D. Labat, S. Virally, R. T. Murray, E. J. R. Kelleher, and A. Mussot, "Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber," Opt. Express 21, 8437-8443 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-8437


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: the beginning,” Physica D238(5), 540–548 (2009). [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics, Fourth Edition (Academic Press, 2006).
  3. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett.56(2), 135–138 (1986). [CrossRef] [PubMed]
  4. S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun.226(1-6), 415–422 (2003). [CrossRef]
  5. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28(22), 2225–2227 (2003). [CrossRef] [PubMed]
  6. S. Trillo and S. Wabnitz, “Bloch wave theory of modulational polarization instabilities in birefringent optical fibers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(1), 1048–1058 (1997). [CrossRef]
  7. A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP31, 486 (1970).
  8. S. Wabnitz, “Modulational polarization instability of light in a nonlinear birefringent dispersive medium,” Phys. Rev. A38(4), 2018–2021 (1988). [CrossRef] [PubMed]
  9. J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A42(1), 682–685 (1990). [CrossRef] [PubMed]
  10. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun.78(2), 137–142 (1990). [CrossRef]
  11. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett.20(8), 866–868 (1995). [CrossRef] [PubMed]
  12. G. Millot, E. Seve, S. Wabnitz, and M. Haelterman, “Observation of induced modulational polarization instabilities and pulse-train generation in the normal-dispersion regime of a birefringent optical fiber,” J. Opt. Soc. Am. B15(4), 1266–1277 (1998). [CrossRef]
  13. P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett.75(19), 2873–2875 (1999). [CrossRef]
  14. D. Amans, E. Brainis, M. Haelterman, P. Emplit, and S. Massar, “Vector modulation instability induced by vacuum fluctuations in highly birefringent fibers in the anomalous-dispersion regime,” Opt. Lett.30(9), 1051–1053 (2005). [CrossRef] [PubMed]
  15. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  16. J. S. Chen, G. K. Wong, S. G. Murdoch, R. J. Kruhlak, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Cross-phase modulation instability in photonic crystal fibers,” Opt. Lett.31(7), 873–875 (2006). [CrossRef] [PubMed]
  17. S. Virally, N. Godbout, S. Lacroix, and L. Labonté, “Two-fold symmetric geometries for tailored phase-matching in birefringent solid-core air-silica microstructured fibers,” Opt. Express18(10), 10731–10741 (2010). [CrossRef] [PubMed]
  18. F. Biancalana and D. V. Skryabin, “Vector modulational instabilities in ultra-small core optical fibres,” J. Opt. A, Pure Appl. Opt.6(4), 301–306 (2004). [CrossRef]
  19. A. Tonello and S. Wabnitz, “Switching off polarization modulation instabilities in photonic crystal fibers,” IEEE Photon. Technol. Lett.18(8), 953–955 (2006). [CrossRef]
  20. G. Millot, A. Sauter, J. M. Dudley, L. Provino, and R. S. Windeler, “Polarization mode dispersion and vectorial modulational instability in air-silica microstructure fiber,” Opt. Lett.27(9), 695–697 (2002). [CrossRef] [PubMed]
  21. R. J. Kruhlak, G. K. Wong, J. S. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett.31(10), 1379–1381 (2006). [CrossRef] [PubMed]
  22. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser,” J. Opt. Soc. Am. B29(8), 1959–1967 (2012). [CrossRef]
  23. B. Kibler, C. Billet, J. M. Dudley, R. S. Windeler, and G. Millot, “Effects of structural irregularities on modulational instability phase matching in photonic crystal fibers,” Opt. Lett.29(16), 1903–1905 (2004). [CrossRef] [PubMed]
  24. A. T. Nguyen, K. Phan Huy, E. Brainis, P. Mergo, J. Wojcik, T. Nasilowski, J. Van Erps, H. Thienpont, and S. Massar, “Enhanced cross phase modulation instability in birefringent photonic crystal fibers in the anomalous dispersion regime,” Opt. Express14(18), 8290–8297 (2006). [CrossRef] [PubMed]
  25. C. R. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron.23(2), 174–176 (1987). [CrossRef]
  26. A. Mussot, A. Kudlinski, R. Habert, I. Dahman, G. Mélin, L. Galkovsky, A. Fleureau, S. Lempereur, L. Lago, D. Bigourd, T. Sylvestre, M. W. Lee, and E. Hugonnot, “20 THz-bandwidth continuous-wave fiber optical parametric amplifier operating at 1 µm using a dispersion-stabilized photonic crystal fiber,” Opt. Express20(27), 28906–28911 (2012). [CrossRef] [PubMed]
  27. B. Stiller, S. M. Foaleng, J.-C. Beugnot, M. W. Lee, M. Delqué, G. Bouwmans, A. Kudlinski, L. Thévenaz, H. Maillotte, and T. Sylvestre, “Photonic crystal fiber mapping using Brillouin echoes distributed sensing,” Opt. Express18(19), 20136–20142 (2010). [CrossRef] [PubMed]
  28. R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Synchronously pumped photonic crystal fiber-based optical parametric oscillator,” Opt. Lett.37(15), 3156–3158 (2012). [CrossRef] [PubMed]
  29. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express13(2), 534–544 (2005). [CrossRef] [PubMed]
  30. J. A. Slater, J.-S. Corbeil, S. Virally, F. Bussières, A. Kudlinski, G. Bouwmans, S. Lacroix, N. Godbout, and W. Tittel, “Microstructured fiber source of photon pairs at widely separated wavelengths,” Opt. Lett.35(4), 499–501 (2010). [CrossRef] [PubMed]
  31. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37(10), 1652–1654 (2012). [CrossRef] [PubMed]
  32. T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express20(11), 12004–12013 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited