OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8460–8473

Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses

Craig A. Zuhlke, Troy P. Anderson, and Dennis R. Alexander  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8460-8473 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1758 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The formation of self-organized micro- and nano-structured surfaces on nickel via both above surface growth (ASG) and below surface growth (BSG) mechanisms using femtosecond laser pulse illumination is reported. Detailed stepped growth experiments demonstrate that conical mound-shaped surface structure development is characterized by a balance of growth mechanisms including scattering from surface structures and geometric effects causing preferential ablation of the valleys, flow of the surface melt, and redeposition of ablated material; all of which are influenced by the laser fluence and the number of laser shots on the sample. BSG-mound formation is dominated by scattering, while ASG-mound formation is dominated by material flow and redeposition. This is the first demonstration to our knowledge of the use of femtosecond laser pulses to fabricate metallic surface structures that rise above the original surface. These results are useful in understanding the details of multi-pulse femtosecond laser interaction with metals.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(240.5770) Optics at surfaces : Roughness
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 13, 2013
Revised Manuscript: March 22, 2013
Manuscript Accepted: March 22, 2013
Published: March 29, 2013

Craig A. Zuhlke, Troy P. Anderson, and Dennis R. Alexander, "Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses," Opt. Express 21, 8460-8473 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. G. Lee, H. M. Branz, Y.-T. Lin, E. Mazur, and M.-J. Sher, “Light trapping for thin silicon solar cells by femtosecond laser texturing preprint,” in IEEE Phot. Spec. Conf. (2012).
  2. H. Wang, P. Kongsuwan, G. Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced simultaneous surface texturing and crystallization of a-Si:H thin film: absorption and crystallinity,” J. Manuf. Sci. Eng.134(3), 031006 (2012). [CrossRef]
  3. H. Wang, P. Kongsuwan, G. Satoh, and Y. L. Yao, “Effect of processing medium and condition on absorption enhancement of femtosecond laser treated a-Si: H thin film,” Proceedings of NAMRI39, (2011).
  4. M.-J. Sher, M. T. Winkler, and E. Mazur, “Pulsed-laser hyperdoping and surface texturing for photovoltaics,” MRS Bull.36(06), 439–445 (2011). [CrossRef]
  5. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells94(12), 2251–2257 (2010). [CrossRef]
  6. M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008). [CrossRef]
  7. A. Serpengüzel, A. Kurt, I. Inanç, J. Cary, E. Mazur, A. Serpenguzel, I. Inanç, and J. E. Carey, “Luminescence of black silicon,” J. Nanophotonics2(1), 021770 (2008). [CrossRef]
  8. B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. Adv. Mater.89, 663–666 (2007).
  9. J. E. Carey, C. H. Crouch, and E. Mazur, “Femtosecond-laser-assisted microstructuring of silicon surfaces,” Lasers and Electro-Optics Society (LEOS) (2003), pp. 97–98.
  10. R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” Jpn. J. Appl. Phys.93(5), 2626 (2003). [CrossRef]
  11. A. Y. Vorobyev and C. Guo, “Laser turns silicon superwicking,” Opt. Express18(7), 6455–6460 (2010). [CrossRef] [PubMed]
  12. A. Y. Vorobyev and C. Guo, “Water sprints uphill on glass,” Jpn. J. Appl. Phys.108(12), 123512 (2010). [CrossRef]
  13. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci.256(1), 61–66 (2009). [CrossRef]
  14. A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir25(8), 4821–4827 (2009). [CrossRef] [PubMed]
  15. E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford, J. Wang, and E. P. Ivanova, “Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation,” Langmuir27(6), 3012–3019 (2011). [CrossRef] [PubMed]
  16. P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, “Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,” Appl. Surf. Sci.257(12), 5213–5218 (2011). [CrossRef]
  17. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007). [CrossRef]
  18. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. Adv. Mater.74, 19–25 (2002).
  19. K. W. Kolasinski, D. Mills, and M. Nahidi, “Laser assisted and wet chemical etching of silicon nanostructures,” J. Vac. Sci. Technol. A24(4), 1474 (2006). [CrossRef]
  20. V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt.47(11), 1846–1850 (2008). [CrossRef] [PubMed]
  21. J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005). [CrossRef]
  22. V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004). [CrossRef]
  23. T. Yong Hwang and C. Guo, “Polarization and angular effects of femtosecond laser-induced conical microstructures on Ni,” Jpn. J. Appl. Phys.111(8), 083518 (2012). [CrossRef]
  24. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. Adv. Mater.70, 383–385 (2000).
  25. B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, “Silicon surface morphologies after femtosecond laser irradiation,” MRS Bull.31(08), 626–633 (2006). [CrossRef]
  26. C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, “Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett.84(11), 1850 (2004). [CrossRef]
  27. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998). [CrossRef]
  28. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci.253(15), 6580–6583 (2007). [CrossRef]
  29. M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005). [CrossRef]
  30. D. Riedel, J. L. Hernandez-Pozos, R. E. Palmer, and K. W. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. Adv. Mater.78, 381–385 (2004).
  31. B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng.48(10), 966–973 (2010). [CrossRef]
  32. K. Kuršelis, R. Kiyan, and B. N. Chichkov, “Formation of corrugated and porous steel surfaces by femtosecond laser irradiation,” Appl. Surf. Sci.258(22), 8845–8852 (2012). [CrossRef]
  33. V. Dumas, A. Rattner, L. Vico, E. Audouard, J. C. Dumas, P. Naisson, and P. Bertrand, “Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization,” J. Biomed. Mater. Res. A100(11), 3108–3116 (2012). [CrossRef] [PubMed]
  34. B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng.48(10), 940–949 (2010). [CrossRef]
  35. Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express17(23), 21124–21133 (2009). [CrossRef] [PubMed]
  36. C. Liang, Y. Yang, H. Wang, J. Yang, and X. Yang, “Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses,” Chin. Sci. Bull.53(5), 700–705 (2008). [CrossRef]
  37. N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, and K. G. Watkins, “Femtosecond laser surface texturing of a nickel-based superalloy,” Appl. Surf. Sci.255(5), 2796–2802 (2008). [CrossRef]
  38. N. G. Semaltianos, W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis, and K. G. Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263,” Appl. Phys. Adv. Mater.94, 999–1009 (2008).
  39. A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci.253(17), 7272–7280 (2007). [CrossRef]
  40. M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser.59, 666–669 (2007). [CrossRef]
  41. W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, “The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy,” Appl. Surf. Sci.253(3), 1299–1303 (2006). [CrossRef]
  42. P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci.233(1-4), 275–287 (2004). [CrossRef]
  43. M. Bereznai, I. Pelsöczi, Z. Tóth, K. Turzó, M. Radnai, Z. Bor, and A. Fazekas, “Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material,” Biomaterials24(23), 4197–4203 (2003). [CrossRef] [PubMed]
  44. G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys. Adv. Mater.74, 729–739 (2002).
  45. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. Adv. Mater.90, 399–402 (2007).
  46. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 1 – 23 (2012).
  47. B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng.48(10), 940–949 (2010). [CrossRef]
  48. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultralow reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt.49(31), 5983 (2010). [CrossRef]
  49. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B72(19), 195422 (2005). [CrossRef]
  50. G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B86(11), 115316 (2012). [CrossRef]
  51. M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett.82(11), 1715 (2003). [CrossRef]
  52. A. P. Singh, A. Kapoor, K. N. Tripathi, and G. R. Kumar, “Laser damage studies of silicon surfaces using ultra-short laser pulses,” Opt. Laser Technol.34(1), 37–43 (2002). [CrossRef]
  53. F. Sánchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Dynamics of the hydrodynamical growth of columns on silicon exposed to ArF excimer-laser irradiation,” Appl. Phys. Adv. Mater.66, 83–86 (1998).
  54. F. Sanchez, J. L. Morenza, and V. Trtik, “Characterization of the progressive growth of columns by excimer laser irradiation of silicon,” Appl. Phys. Lett.75(21), 3303 (1999). [CrossRef]
  55. S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Formation of conical microstructures upon laser evaporation of solids,” Appl. Phys. Adv. Mater.73, 177–181 (2001).
  56. D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci.154–155, 647–658 (2000). [CrossRef]
  57. D. Mills and K. W. Kolasinski, “Solidification driven extrusion of spikes during laser melting of silicon pillars,” Nanotechnology17(11), 2741–2744 (2006). [CrossRef]
  58. A. J. Pedraza, J. D. Fowlkes, S. Jesse, C. Mao, and D. H. Lowndes, “Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres,” Appl. Surf. Sci.168(1-4), 251–257 (2000). [CrossRef]
  59. A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Mater. Sci.734, 731–734 (2008).
  60. A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett.74(16), 2322–2324 (1999). [CrossRef]
  61. A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Laser ablation and column formation in silicon under oxygen-rich atmospheres,” Appl. Phys. Lett.77(19), 3018 (2000). [CrossRef]
  62. F. Sanchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation,” Appl. Phys. Lett.69(5), 620 (1996). [CrossRef]
  63. V. V. Voronov, S. I. Dolgaev, S. V. Lavrishchev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, “Formation of conic microstructures upon pulsed laser evaporation of solids,” Quantum Electron.30(8), 710–714 (2000). [CrossRef]
  64. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett.4(5), 89 (1964). [CrossRef]
  65. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012). [CrossRef]
  66. H. van Driel, J. Sipe, and J. Young, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Phys. Rev. Lett.49(26), 1955–1958 (1982). [CrossRef]
  67. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MP4 (1639 KB)     
» Media 2: MP4 (1497 KB)     
» Media 3: MP4 (1485 KB)     
» Media 4: MP4 (1070 KB)     
» Media 5: MP4 (1729 KB)     
» Media 6: MP4 (2179 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited