OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8483–8492

Ultrafast photoinduced enhancement of nonlinear optical response in 15-atom gold clusters on indium tin oxide conducting film

Sunil Kumar, E. S. Shibu, T. Pradeep, and A. K. Sood  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8483-8492 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2865 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is ~3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.

© 2013 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

Original Manuscript: October 31, 2012
Revised Manuscript: December 30, 2012
Manuscript Accepted: December 30, 2012
Published: March 29, 2013

Sunil Kumar, E. S. Shibu, T. Pradeep, and A. K. Sood, "Ultrafast photoinduced enhancement of nonlinear optical response in 15-atom gold clusters on indium tin oxide conducting film," Opt. Express 21, 8483-8492 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev.104(1), 293–346 (2004). [CrossRef] [PubMed]
  2. Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles,” J. Phys. Chem. B109(11), 4865–4871 (2005). [CrossRef] [PubMed]
  3. D. Chemla, J. Heritage, P. Liao, and E. Isaacs, “Enhanced four-wave mixing from silver particles,” Phys. Rev. B27(8), 4553–4558 (1983). [CrossRef]
  4. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett.10(10), 511–513 (1985). [CrossRef] [PubMed]
  5. M. J. Bloemer, J. W. Haus, and P. R. Ashley, “Degenerate four-wave mixing in colloidal gold as a function of particle size,” J. Opt. Soc. Am. B7(5), 790–795 (1990). [CrossRef]
  6. R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62(19), 13160–13166 (2000). [CrossRef]
  7. T. G. Schaaff, G. Knight, M. N. Shafigullin, R. F. Borkman, and R. L. Whetten, “Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound,” J. Phys. Chem. B102(52), 10643–10646 (1998). [CrossRef]
  8. T. G. Schaaff and R. L. Whetten, “Giant gold−glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B104(12), 2630–2641 (2000). [CrossRef]
  9. S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, “Visible to Infrared Luminescence from a 28-Atom Gold Cluster,” J. Phys. Chem. B106(13), 3410–3415 (2002). [CrossRef]
  10. E. S. Shibu and T. Pradeep, “Quantum clusters in cavities: Trapped Au15 in cyclodextrins,” Chem. Mater.23(4), 989–999 (2011). [CrossRef]
  11. R. Jin, “Quantum sized, thiolate-protected gold nanoclusters,” Nanoscale2(3), 343–362 (2010). [CrossRef] [PubMed]
  12. B. D. Yadav and V. Kumar, “Gd@Au15: a magic magnetic gold cluster for cancer therapy and bioimaging,” Appl. Phys. Lett.97(13), 133701 (2010). [CrossRef]
  13. J. Thomas, M. Anija, J. Cyriac, T. Pradeep, and R. Philip, “Observation of a fifth order optical nonlinearity in 29 kDa Au@alkanethiol clusters excited in the visible,” Chem. Phys. Lett.403(4–6), 308–313 (2005). [CrossRef]
  14. S. Link, M. A. El-Sayed, T. Gregory Schaaff, and R. L. Whetten, “Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster,” Chem. Phys. Lett.356(3–4), 240–246 (2002). [CrossRef]
  15. R. Philip, P. Chantharasupawong, H. Qian, R. Jin, and J. Thomas, “Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals,” Nano Lett.12(9), 4661–4667 (2012). [CrossRef] [PubMed]
  16. B. Dupuis, C. Michaut, I. Jouanin, J. Delaire, P. Robin, P. Feneyrou, and V. Dentan, “Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting,” Chem. Phys. Lett.300(1–2), 169–176 (1999). [CrossRef]
  17. M. P. Joshi, J. Swiatkiewicz, F. M. Xu, P. N. Prasad, B. A. Reinhardt, and R. Kannan, “Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting,” Opt. Lett.23(22), 1742–1744 (1998). [CrossRef] [PubMed]
  18. C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, “Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.100(11), 6297–6301 (2003). [CrossRef] [PubMed]
  19. V. Mamidala, L. Polavarapu, J. Balapanuru, K. P. Loh, Q.-H. Xu, and W. Ji, “Enhanced nonlinear optical responses in donor-acceptor ionic complexes via photo induced energy transfer,” Opt. Express18(25), 25928–25935 (2010). [CrossRef]
  20. A. Vargas, G. Santarossa, M. Iannuzzi, and A. Baiker, “Fluxionality of gold nanoparticles investigated by Born-Oppenheimer molecular dynamics,” Phys. Rev. B80(19), 195421 (2009). [CrossRef]
  21. M. S. -Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
  22. N. Kamaraju, S. Kumar, A. K. Sood, S. Guha, S. Krishnamurthy, and C. N. R. Rao, “Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond z-scan measurements,” Appl. Phys. Lett.91(25), 251103 (2007). [CrossRef]
  23. H. I. Elim, W. Ji, and F. Zhu, “Carrier concentration dependence of optical Kerr nonlinearity in indium tin oxide films,” Appl. Phys. B82(3), 439–442 (2006). [CrossRef]
  24. A. C. Templeton, W. P. Wuelfing, and R. W. Murray, “Monolayer-protected cluster molecules,” Acc. Chem. Res.33(1), 27–36 (2000). [CrossRef] [PubMed]
  25. J. Lv, L. Jiang, C. Li, X. Liu, M. Yuan, J. Xu, W. Zhou, Y. Song, H. Liu, Y. Li, and D. Zhu, “Large third-order optical nonlinear effects of gold nanoparticles with unusual fluorescence enhancement,” Langmuir24(15), 8297–8302 (2008). [CrossRef] [PubMed]
  26. S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett.34(18), 2867–2869 (2009). [CrossRef] [PubMed]
  27. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys.103(9), 093108 (2008). [CrossRef]
  28. F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, and R. Rinaldi, “Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition,” Phys. Rev. B72(8), 085437–085445 (2005). [CrossRef]
  29. R. Pal, L.-M. Wang, W. Huang, L.-S. Wang, and X. C. Zeng, “Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Aun- (n = 13-15) and MAun- (n = 12-14; M = Ag, Cu),” J. Chem. Phys.134(5), 054306 (2011). [CrossRef] [PubMed]
  30. R. S. Swathi and K. L. Sebastian, “Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence,” J. Chem. Phys.130(8), 086101–086103 (2009). [CrossRef] [PubMed]
  31. M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin, “Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties,” J. Am. Chem. Soc.130(18), 5883–5885 (2008). [CrossRef] [PubMed]
  32. M. Brunel, B. Campagne, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Ultrafast induced excited state absorption in organically doped xerogels,” Chem. Phys.246(1–3), 477–481 (1999). [CrossRef]
  33. S. Kumar, N. Kamaraju, K. S. Vasu, A. Nag, A. K. Sood, and C. N. R. Rao, “Graphene analogue BCN: Femtosecond nonlinear optical susceptibility and hot carrier dynamics,” Chem. Phys. Lett.499(1–3), 152–157 (2010). [CrossRef]
  34. R. F. Haglund, L. Yang, R. H. Magruder, J. E. Wittig, K. Becker, and R. A. Zuhr “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett.18(5), 373–375 (1993). [CrossRef] [PubMed]
  35. R. Nakamura and Y. Kanematsu, “A simple and effective method for femtosecond spectral snapshots,” J. Lumin.94–95(2–4), 559–563 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited