OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8508–8520

Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers

Ting Yang, Jianji Dong, Shasha Liao, Dexiu Huang, and Xinliang Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8508-8520 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2122 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compare several schemes for broadband optical frequency comb (OFC) generation based on several nonlinear effects in highly nonlinear fiber (HNLF). Cascaded four wave mixing (CFWM) and self-phase modulation (SPM) processes in HNLF are proved to be effective ways for spectrum broadening. We investigate some parameters affecting the performance of the output OFC in detail. When only CFWM occurs in the HNLF, broadband OFC can be generated with poor power flatness. When only SPM occurs in the HNLF, we obtain a 10 GHz OFC of 103 comb lines within 5-dB power deviation. When both CFWM and SPM simultaneously occur in the HNLF, we obtain a 10 GHz OFC of 143 comb lines within 4.5-dB power deviation. All the OFC generation schemes have the advantages of tunability of central wavelength and repetition frequency.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: February 4, 2013
Revised Manuscript: March 11, 2013
Manuscript Accepted: March 12, 2013
Published: April 1, 2013

Ting Yang, Jianji Dong, Shasha Liao, Dexiu Huang, and Xinliang Zhang, "Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers," Opt. Express 21, 8508-8520 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  2. Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007). [CrossRef]
  3. Z. Jiang, D. E. Leaird, C. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007). [CrossRef]
  4. J. Yao, “Microwave photonics: Arbitrary waveform generation,” Nat. Photonics4(2), 79–80 (2010). [CrossRef]
  5. 5. Y. Takita, F. Futami, M. Doi, and S. Watanabe, “Highly stable ultra-short pulse generation by filtering out flat optical frequency components,” CLEO, CTuN1 (2004).
  6. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol.24(6), 2311–2317 (2006). [CrossRef]
  7. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, “Ultraflat optical comb generation by phase-only modulation of continuous-wave light,” IEEE Photon. Technol. Lett.20(1), 36–38 (2008). [CrossRef]
  8. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett.43(19), 1040–1042 (2007). [CrossRef]
  9. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010). [CrossRef] [PubMed]
  10. Y. Dou, H. Zhang, and M. Yao, “Improvement of flatness of optical frequency comb based on nonlinear effect of intensity modulator,” Opt. Lett.36(14), 2749–2751 (2011). [CrossRef] [PubMed]
  11. J. Zhang, N. Chi, J. Yu, Y. Shao, J. Zhu, B. Huang, and L. Tao, “Generation of coherent and frequency-lock multi-carriers using cascaded phase modulators and recirculating frequency shifter for Tb/s optical communication,” Opt. Express19(14), 12891–12902 (2011). [CrossRef] [PubMed]
  12. J. Zhang, J. Yu, Z. Dong, Y. Shao, and N. Chi, “Generation of full C-band coherent and frequency-lock multi-carriers by using recirculating frequency shifter loops based on phase modulator with external injection,” Opt. Express19(27), 26370–26381 (2011). [CrossRef] [PubMed]
  13. L. Xi, J. Li, X. Zhang, F. Tian, and W. Zhang, “Factors affecting the performance of a multi-tone carrier source based re-circulating frequency shifter,” Chin. Phys. B20(8), 084202 (2011). [CrossRef]
  14. F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol.29(8), 1085–1091 (2011). [CrossRef]
  15. A. Cerqueira Sodre, J. M. Chavez Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express16(4), 2816–2828 (2008). [CrossRef] [PubMed]
  16. F. C. Cruz, “Optical frequency combs generated by four-wave mixing in optical fibers for astrophysical spectrometer calibration and metrology,” Opt. Express16(17), 13267–13275 (2008). [CrossRef] [PubMed]
  17. J. Li, X. Xiao, L. Kong, and C. Yang, “Enhancement of cascaded four-wave mixing via optical feedback,” Opt. Express20(20), 21940–21945 (2012). [CrossRef] [PubMed]
  18. E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express20(3), 3331–3344 (2012). [CrossRef] [PubMed]
  19. R. Slavík, J. Kakande, P. Petropoulos, and D. J. Richardson, “Processing of optical combs with fiber optic parametric amplifiers,” Opt. Express20(9), 10059–10070 (2012). [CrossRef] [PubMed]
  20. K. Inoue, “Four-wave mixing in an optical fiber in zero-dispersion wavelength region,” J. Lightwave Technol.10(11), 1553–1561 (1992). [CrossRef]
  21. G. P. Agrawal, Nonlinear Fiber Optics, Fourth Edition (2006).
  22. Y. Ji, Y. Li, W. Li, X. Hong, H. Guo, Y. Zuo, K. Xu, J. Wu, and J. Lin, “Generation of 40 GHz phase stable optical short pulses using intensity modulator and two cascaded phase modulators,” Front. Optoelectron. China4(3), 292–297 (2011). [CrossRef]
  23. Y. Yang, C. Lou, H. Zhou, J. Wang, and Y. Gao, “Simple pulse compression scheme based on filtering self-phase modulation-broadened spectrum and its application in an optical time-division multiplexing system,” Appl. Opt.45(28), 7524–7528 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited