OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8521–8534

Fabrication of multiple Bragg gratings in microstructured polymer fibers using a phase mask with several diffraction orders

G. Statkiewicz-Barabach, K. Tarnowski, D. Kowal, P. Mergo, and W. Urbanczyk  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8521-8534 (2013)
http://dx.doi.org/10.1364/OE.21.008521


View Full Text Article

Enhanced HTML    Acrobat PDF (4231 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate for the first time a possibility of fabrication of Bragg gratings in polymer microstructured fibers with multiple reflection peaks by using He-Cd laser (λ = 325 nm) and a phase mask with higher diffraction orders. We experimentally studied the growth dynamics of the grating with the primary Bragg peak at λB = 1555 nm, for which we also observed good quality peaks located at λB/2 = 782 nm and 2λB/3 = 1040 nm. Temperature response of all the Bragg peaks was also investigated. Detailed numerical simulations of the interference pattern produced by the phase mask suggests that the higher order Bragg peaks originate from interference of UV beams diffracted in ± 1st, ± 2nd orders. We also demonstrated the grating with the reflection peak at λB/2 = 659 nm, which is the shortest Bragg wavelength ever reported for polymer microstructured fibers. This peak was observed for the grating with primary Bragg wavelength at λB = 1309 nm.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(160.5470) Materials : Polymers
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 11, 2013
Revised Manuscript: March 14, 2013
Manuscript Accepted: March 15, 2013
Published: April 1, 2013

Citation
G. Statkiewicz-Barabach, K. Tarnowski, D. Kowal, P. Mergo, and W. Urbanczyk, "Fabrication of multiple Bragg gratings in microstructured polymer fibers using a phase mask with several diffraction orders," Opt. Express 21, 8521-8534 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-8521


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. O. Hill and G. Meltz, “Fiber Bragg grating technology - fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997). [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997). [CrossRef]
  3. D. Webb and K. Kalli, “Polymer fiber Bragg gratings,” in Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation, A. Cusano, A. Cutolo, and J. Albert, Eds. Sharjah (Bentham Science Publishers 2011), pp. 292−312.
  4. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett.11(3), 352–354 (1999). [CrossRef]
  5. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Effects of the zeroth-order diffraction of a phase mask on Bragg gratings,” J. Lightwave Technol.17(11), 2361–2365 (1999). [CrossRef]
  6. H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001). [CrossRef]
  7. H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power,” IEEE Photon. Technol. Lett.16(1), 159–161 (2004). [CrossRef]
  8. H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun.220(4-6), 337–343 (2003). [CrossRef]
  9. Z. F. Zhang, Ch. Zhang, X. M. Tao, G. F. Wang, and G. D. Peng, “Inscription of polymer optical fiber Bragg grating at 962 nm and its potential in strain sensing,” IEEE Photon. Technol. Lett.22(21), 1562–1564 (2010). [CrossRef]
  10. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011). [CrossRef]
  11. X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in a polymer optical fibre for strain, bend and temperature sensing,” Meas. Sci. Technol.21(9), 094005 (2010). [CrossRef]
  12. K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G. D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol.18(10), 3155–3164 (2007). [CrossRef]
  13. N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” Thesis, EPFL, Lausanne (2008).
  14. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett.30(24), 3296–3298 (2005). [CrossRef] [PubMed]
  15. K. E. Carroll, Ch. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express15(14), 8844–8850 (2007). [CrossRef] [PubMed]
  16. I. P. Johnson, D. J. Webb, K. Kalli, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Polymer PCF Bragg grating sensor based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer,” Proc. SPIE8073, 80732V, 80732V-8 (2011). [CrossRef]
  17. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011). [CrossRef]
  18. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011). [CrossRef] [PubMed]
  19. A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett.23(10), 660–662 (2011). [CrossRef]
  20. W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012). [CrossRef]
  21. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012). [CrossRef]
  22. A. Stefani, M. Stecher, O. Bang, and G. Town, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photon. Technol. Lett.24(13), 1148–1150 (2012). [CrossRef]
  23. N. M. Dragomir, C. M. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett.28(10), 789–791 (2003). [CrossRef] [PubMed]
  24. C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun.256(4-6), 310–318 (2005). [CrossRef]
  25. B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express14(22), 10332–10338 (2006). [CrossRef] [PubMed]
  26. C. M. Rollinson, S. A. Wade, B. P. Kouskousis, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks,” J. Opt. Soc. Am. A29(7), 1259–1268 (2012). [CrossRef] [PubMed]
  27. W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun.101(1-2), 85–91 (1993). [CrossRef]
  28. S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π -phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett.34(13), 2021–2023 (2009). [CrossRef] [PubMed]
  29. H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol.21(9), 094004 (2010). [CrossRef]
  30. B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett.18(15), 1277–1279 (1993). [CrossRef] [PubMed]
  31. S. A. Wade, W. G. Brown, H. K. Bal, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Effect of phase mask alignment on fiber Bragg grating spectra at harmonics of the Bragg wavelength,” J. Opt. Soc. Am. A29(8), 1597–1605 (2012). [CrossRef] [PubMed]
  32. T. Baghdasaryan, T. Geernaert, F. Berghmans, and H. Thienpont, “Geometrical study of a hexagonal lattice photonic crystal fiber for efficient femtosecond laser grating inscription,” Opt. Express19(8), 7705–7716 (2011). [CrossRef] [PubMed]
  33. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett.24(21), 1460–1462 (1999). [CrossRef] [PubMed]
  34. J. D. Mills, C. W. J. Hillman, B. H. Blott, and W. S. Brocklesby, “Imaging of free-space interference patterns used to manufacture fiber bragg gratings,” Appl. Opt.39(33), 6128–6135 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited