OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8544–8549

Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8544-8549 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Taking advantage of relatively strong Rayleigh scattering and Raman gain of dispersion compensated fiber (DCF), three configurations to form efficient random fiber lasers (RFL) are proposed in this paper. Compared with the reported RFL formed by single-mode fiber (SMF) solely, lasing threshold and length of the proposed RFL are effectively reduced through combination of DCF and SMF. In addition, FBGs with central wavelengths at the 1st and 2nd -order Raman Stokes wavelengths are also added to the hybrid SMF/DCF cavity to further reduce the lasing threshold, leading to realization of a new kind of 2nd-order RFL.

© 2013 OSA

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 30, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 18, 2013
Published: April 1, 2013

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, "Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber," Opt. Express 21, 8544-8549 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004). [CrossRef] [PubMed]
  2. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29(18), 2163–2165 (2004). [CrossRef] [PubMed]
  3. C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007). [CrossRef] [PubMed]
  4. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]
  5. A. A. Fotiadi, “Random lasers: An incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010). [CrossRef]
  6. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011). [CrossRef]
  7. J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express 20(24), 27376–27381 (2012). [CrossRef] [PubMed]
  8. Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20(16), 17695–17700 (2012). [CrossRef] [PubMed]
  9. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20(10), 11178–11188 (2012). [CrossRef] [PubMed]
  10. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities,” J. Lightwave Technol. 29(10), 1482–1488 (2011). [CrossRef]
  11. Y. J. Rao, “Study on fiber-optic low-coherence interferometric and fiber Bragg grating sensors,” Photonic Sensors 1(4), 382–400 (2011). [CrossRef]
  12. O. Frazão, C. Correia, J. L. Santos, and J. M. Baptista, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain–temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009). [CrossRef]
  13. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 ?m,” Opt. Express 19(19), 18486–18494 (2011). [CrossRef] [PubMed]
  14. W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20(13), 14400–14405 (2012). [CrossRef] [PubMed]
  15. A. K. Zamzuri, M. I. Md Ali, A. Ahmad, R. Mohamad, and M. A. Mahdi, “Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity,” Opt. Lett. 31(7), 918–920 (2006). [CrossRef] [PubMed]
  16. A. M. R. Pinto, M. Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser,” Opt. Express 19(12), 11906–11915 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited