OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8570–8586

Reversible Fano resonance by transition from fast light to slow light in a coupled-resonator-induced transparency structure

Yundong Zhang, Xuenan Zhang, Ying Wang, Ruidong Zhu, Yulong Gai, Xiaoqi Liu, and Ping Yuan  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8570-8586 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3478 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically propose and experimentally perform a novel dispersion tuning scheme to realize a tunable Fano resonance in a coupled-resonator-induced transparency (CRIT) structure coupled Mach-Zehnder interferometer. We reveal that the profile of the Fano resonance in the resonator coupled Mach-Zehnder interferometers (RCMZI) is determined not only by the phase shift difference between the two arms of the RCMZI but also by the dispersion (group delay) of the CRIT structure. Furthermore, it is theoretically predicted and experimentally demonstrated that the slope and the asymmetry parameter ( q ) describing the Fano resonance spectral line shape of the RCMZI experience a sign reversal when the dispersion of the CRIT structure is tuned from abnormal dispersion (fast light) to normal dispersion (slow light). These theoretical and experimental results indicate that the reversible Fano resonance which holds significant implications for some attractive device applications such as highly sensitive biochemical sensors, ultrafast optical switches and routers can be realized by the dispersion tuning scheme in the RCMZI.

© 2013 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(260.2030) Physical optics : Dispersion
(260.5740) Physical optics : Resonance
(230.4555) Optical devices : Coupled resonators
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

Original Manuscript: January 7, 2013
Revised Manuscript: March 25, 2013
Manuscript Accepted: March 25, 2013
Published: April 1, 2013

Yundong Zhang, Xuenan Zhang, Ying Wang, Ruidong Zhu, Yulong Gai, Xiaoqi Liu, and Ping Yuan, "Reversible Fano resonance by transition from fast light to slow light in a coupled-resonator-induced transparency structure," Opt. Express 21, 8570-8586 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961). [CrossRef]
  2. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  3. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002). [CrossRef]
  4. S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002). [CrossRef]
  5. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009). [CrossRef] [PubMed]
  6. G. Shvets and Y. A. Urzhumov, “Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances,” Phys. Rev. Lett.93(24), 243902 (2004). [CrossRef] [PubMed]
  7. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007). [CrossRef] [PubMed]
  8. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett.83(8), 1527–1529 (2003). [CrossRef]
  9. W. Liang, L. Yang, J. K. S. Poon, Y. Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett.31(4), 510–512 (2006). [CrossRef] [PubMed]
  10. B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. H. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett.98(2), 021116 (2011). [CrossRef]
  11. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010). [CrossRef]
  12. M. F. Yanik, S. H. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739–2741 (2003). [CrossRef]
  13. J. T. Shen and S. H. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett.95(21), 213001 (2005). [CrossRef] [PubMed]
  14. Y. Lu, J. Q. Yao, X. F. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett.30(22), 3069–3071 (2005). [CrossRef] [PubMed]
  15. X. Yang, C. Husko, C. W. Wong, M. B. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett.91(5), 051113 (2007). [CrossRef]
  16. L. J. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers,” Opt. Lett.32(7), 781–783 (2007). [CrossRef] [PubMed]
  17. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater.6(11), 862–865 (2007). [CrossRef] [PubMed]
  18. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett.102(4), 043907 (2009). [CrossRef] [PubMed]
  19. J. Pan, Y. J. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. H. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett.97(10), 101102 (2010). [CrossRef]
  20. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  21. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys.3(6), 406–410 (2007). [CrossRef]
  22. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  23. F. Cheng, H. F. Liu, B. H. Li, J. Han, H. Xiao, X. F. Han, C. Z. Gu, and X. G. Qiu, “Tuning asymmetry parameter of Fano resonance of spoof surface plasmons by modes coupling,” Appl. Phys. Lett.100(13), 131110 (2012). [CrossRef]
  24. L. J. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express14(15), 6851–6857 (2006). [CrossRef] [PubMed]
  25. S. Sandhu, M. L. Povinelli, and S. H. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett.32(22), 3333–3335 (2007). [CrossRef] [PubMed]
  26. Y. H. Wen, O. Kuzucu, T. G. Hou, M. Lipson, and A. L. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett.36(8), 1413–1415 (2011). [CrossRef] [PubMed]
  27. Y. Dumeige, S. Trebaol, and P. Feron, “Intracavity coupled-active-resonator-induced dispersion,” Phys. Rev. A79(1), 013832 (2009). [CrossRef]
  28. B. B. Li, Y. F. Xiao, C. L. Zou, X. F. Jiang, Y. C. Liu, F. W. Sun, Y. Li, and Q. H. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett.100(2), 021108 (2012). [CrossRef]
  29. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004). [CrossRef]
  30. J. E. Heebner and R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett.24(12), 847–849 (1999). [CrossRef] [PubMed]
  31. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express12(1), 90–103 (2004). [CrossRef] [PubMed]
  32. M. Terrel, M. J. F. Digonnet, and S. H. Fan, “Ring-coupled Mach-Zehnder interferometer optimized for sensing,” Appl. Opt.48(26), 4874–4879 (2009). [CrossRef] [PubMed]
  33. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009). [CrossRef]
  34. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor,” Phys. Rev. Lett.99(13), 133601 (2007). [CrossRef] [PubMed]
  35. Y. Dumeige, T. K. N. Nguyen, L. Ghisa, S. Trebaol, and P. Feron, “Measurement of the dispersion induced by a slow-light system based on coupled active-resonator-induced transparency,” Phys. Rev. A78(1), 013818 (2008). [CrossRef]
  36. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited