OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8605–8613

On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation

Feng Gao, Ravi Pant, Enbang Li, Christopher G. Poulton, Duk-Yong Choi, Stephen J. Madden, Barry Luther-Davies, and Benjamin J. Eggleton  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8605-8613 (2013)
http://dx.doi.org/10.1364/OE.21.008605


View Full Text Article

Enhanced HTML    Acrobat PDF (1301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first demonstration of a photonic-chip laser frequency sensor using Brillouin mutually-modulated cross-gain modulation (MMXGM). A large sensitivity (∼9.5 mrad/kHz) of the modulation phase shift to probe carrier frequency is demonstrated at a modulation frequency of 50 kHz using Brillouin MMXGM in a ∼7 cm long chalcogenide rib waveguide.

© 2013 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(190.0190) Nonlinear optics : Nonlinear optics
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 4, 2013
Revised Manuscript: March 18, 2013
Manuscript Accepted: March 21, 2013
Published: April 2, 2013

Citation
Feng Gao, Ravi Pant, Enbang Li, Christopher G. Poulton, Duk-Yong Choi, Stephen J. Madden, Barry Luther-Davies, and Benjamin J. Eggleton, "On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation," Opt. Express 21, 8605-8613 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-8605


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S. W. Ahn, W. H. Steier, H. R. Fetterman, and Y. Chang, “MSTAR: a submicrometer absolute metrology system,” Opt. Lett.28, 890–892 (2003). [CrossRef] [PubMed]
  2. Z. Xie and H. F. Taylor, “Fabry-Perot optical binary switch for aircraft applications,” Opt. Lett.31, 2695–2697 (2006). [CrossRef] [PubMed]
  3. X. F. Mo, B. Zhu, Z. F. Han, Y. Z. Gui, and G. C. Guo, “Faraday-Michelson system for quantum cryptography,” Opt. Lett.30, 2632–2634 (2005). [CrossRef] [PubMed]
  4. S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett.29, 2770–2772 (2004). [CrossRef] [PubMed]
  5. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32, 915–917 (2007). [CrossRef] [PubMed]
  6. Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B,25, C136–C143 (2008). [CrossRef]
  7. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474–481 (2008). [CrossRef]
  8. M. González-Herráez, K. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” AppL. Phys. Lett.87, 081113 (2005). [CrossRef]
  9. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett.94, 153902 (2005). [CrossRef] [PubMed]
  10. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express16, 2764–2777 (2008). [CrossRef] [PubMed]
  11. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37, 969–971 (2012). [CrossRef] [PubMed]
  12. T. Arditi, E. Granot, and S. Sternklar, “Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scatting,” J. Opt.12, 104016 (2010).
  13. S. Sternklar, E. Sarid, A. Arbel, and E. Granot, “Brillouin cross-gain modulation and 10 m/s group velocity,” Opt. Lett.34, 2832–2834 (2009). [CrossRef] [PubMed]
  14. S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt.12, 104016 (2010). [CrossRef]
  15. S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett.36, 4161–4163 (2011). [CrossRef] [PubMed]
  16. R. Pant, C. G. Poulton, D. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19, 8285–8290 (2011). [CrossRef] [PubMed]
  17. B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev., 6, Issue 1, 97–114 (2012). [CrossRef]
  18. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics, 5, 141–148 (2011).
  19. K. Qian, L. Zhan, L. Zhang, Z. Q. Zhu, J. S. Peng, Z. C. Gu, X. Hu, S. Y. Luo, and Y. X. Xia, “Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation,” Opt. Lett.36, 2185–2188 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited