OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8614–8621

Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens

Fei Fan, Sai Chen, Xiang-Hui Wang, and Sheng-Jiang Chang  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8614-8621 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2657 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A tunable metal/magneto-optic plasmonic lens for terahertz isolator is demonstrated. Based on the magneto-optical effect of the semiconductor material and non-symmetrical structure, this plasmonic lens has not only the focusing feature but also nonreciprocal transmission property. Moreover, a transmission enhancement through this device greatly larger than that of the ordinary metallic slit arrays is contributed by the extraordinary optical transmission effect of the magneto surface plasmon polaritons. The results show that the proposed isolator has an isolation bandwidth of larger than 0.4THz and the maximum isolation of higher than 110dB, and its operating frequency also can be broadly tuned by changing the external magnetic field or temperature. This low-loss, high isolation, broadband tunable nonreciprocal terahertz transmission mechanism has a great potential for terahertz application systems.

© 2013 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(230.3240) Optical devices : Isolators
(240.6680) Optics at surfaces : Surface plasmons
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optical Devices

Original Manuscript: February 1, 2013
Revised Manuscript: March 26, 2013
Manuscript Accepted: March 26, 2013
Published: April 2, 2013

Fei Fan, Sai Chen, Xiang-Hui Wang, and Sheng-Jiang Chang, "Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens," Opt. Express 21, 8614-8621 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express15(12), 7737–7751 (2007). [CrossRef] [PubMed]
  2. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett.30(15), 1989–1991 (2005). [CrossRef] [PubMed]
  3. W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett.35(4), 568–570 (2010). [CrossRef] [PubMed]
  4. F. D. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100(1), 013904 (2008). [CrossRef] [PubMed]
  5. Z. F. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008). [CrossRef] [PubMed]
  6. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461(7265), 772–775 (2009). [CrossRef] [PubMed]
  7. F. Fan, S. J. Chang, C. Niu, Y. Hou, and X. H. Wang, “Magnetically tunable silicon ferrite photonic crystals for terahertz circulator,” Opt. Commun.285(18), 3763–3769 (2012). [CrossRef]
  8. F. Fan, S. J. Chang, W. H. Gu, X. H. Wang, and A. Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett.24(22), 2080–2083 (2012). [CrossRef]
  9. B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett.37(11), 1895–1897 (2012). [CrossRef] [PubMed]
  10. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007). [CrossRef] [PubMed]
  11. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express13(18), 6815–6820 (2005). [CrossRef] [PubMed]
  12. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  13. A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011). [CrossRef] [PubMed]
  14. I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett.12(5), 2470–2474 (2012). [CrossRef] [PubMed]
  15. B. Hu, Q. J. Wang, S. W. Kok, and Y. Zhang, “Active focal length control of terahertz slitted plane lenses by magnetoplasmons,” Plasmonics7(2), 191–199 (2012). [CrossRef]
  16. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009), pp. 168–170.
  17. X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011). [CrossRef]
  18. J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express13(3), 847–859 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited