OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8622–8629

20-Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats

I-Cheng Lu, Chia-Chien Wei, Wen-Jr Jiang, Hsing-Yu Chen, Yu-Chieh Chi, Yi-Cheng Li, Dar-Zu Hsu, Gong-Ru Lin, and Jyehong Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8622-8629 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2564 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a colorless weak-resonant-cavity (WRC) FPLD injected by a centralized light source, we have experimentally demonstrated a superior performance of 20-Gbps uplink transmission in a WDM-PON. Even though the typical modulation bandwidth of a WRC-FPLD is only ~1.25 GHz, using spectrally-efficient 32-QAM OFDM or SC-FDE modulation, 20-Gbps uplink signals can achieve the FEC limit after 25-km dispersion-uncompensated single-mode fiber transmission. Because of the advantage of lower PAPR, the SC-FDE signals outperform the OFDM signals with the fixed 32-QAM format in the proposed system; moreover, SC-FDE scheme can be another promising candidate for uplinks in WDM-PONs, for its simplification to ONUs. The signal at the mode of 1560.7 nm shows similar quality with the signal at the modes of 1545.3 nm and 1574.7 nm, the WRC-FPLD, accordingly, has wide injection wavelength range from at least 1545.3 nm to 1574.7 nm. With the mode spacing of 0.55 nm, consequently, we have demonstrated the applicability of the colorless WRC-FPLD on supporting up to 36 channels in the WDM-PON.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation
(140.3520) Lasers and laser optics : Lasers, injection-locked

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 6, 2013
Revised Manuscript: March 9, 2013
Manuscript Accepted: March 9, 2013
Published: April 2, 2013

I-Cheng Lu, Chia-Chien Wei, Wen-Jr Jiang, Hsing-Yu Chen, Yu-Chieh Chi, Yi-Cheng Li, Dar-Zu Hsu, Gong-Ru Lin, and Jyehong Chen, "20-Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats," Opt. Express 21, 8622-8629 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. J. Effenberger, “The XG-PON system: cost effective 10 Gb/s access,” J. Lightwave Technol.29(4), 403–409 (2011). [CrossRef]
  2. N. Cvijetic, M. Cvijetic, M. F. Huang, E. Ip, Y. K. Huang, and T. Wang, “Terabit Optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol.30(4), 493–503 (2012). [CrossRef]
  3. K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012). [CrossRef]
  4. L. Xu, Q. Li, N. Ophir, K. Padmaraju, L. W. Luo, L. Chen, M. Lipson, and K. Bergman, “Colorless optical network unit based on silicon photonic components for WDM PON,” IEEE Photon. Technol. Lett.24(16), 1372–1374 (2012). [CrossRef]
  5. K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett.20(18), 1533–1535 (2008). [CrossRef]
  6. P. Chanclou, F. Payoux, T. Soret, N. Genay, R. Brenot, F. Blache, M. Goix, J. Landreau, O. Legouezigou, and F. Mallécot, “Demonstration of RSOA-based remote modulation at 2.5 and 5 Gbit/s for WDM PON,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2007), paper OWD1. [CrossRef]
  7. N. Kashima, “Injection-locked Fabry–Pérot laser diode transmitters with semiconductor optical amplifier for WDM-PON,” J. Lightwave Technol.27(12), 2132–2139 (2009). [CrossRef]
  8. H. L. Zhang, G. W. Pickrell, Z. Morbi, Y. Wang, M. Ho, K. A. Anselm, and W.-Y. Hwang, “32-channel, injection-locked WDM-PON SFP transceivers for symmetric 1.25 Gbps operation,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper NTuB4.
  9. S. H. Yoo, H. K. Lee, D. S. Lim, J. H. Jin, L. Byun, and C. H. Lee, “2.5-Gb/s broadcast signal transmission in a WDM-PON by using a mutually injected Fabry-Pérot laser diodes,” in Conference Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2011), paper CFH7.
  10. F. Xiong, W. D. Zhong, and H. Kim, “A broadcast-capable WDM-PON based on polarization-sensitive weak-resonant-cavity Fabry–Perot laser diodes,” J. Lightwave Technol.30(3), 355–361 (2012). [CrossRef]
  11. G.-R. Lin, H.-L. Wang, G. C. Lin, Y. H. Huang, Y. H. Lin, and T. K. Cheng, “Comparison on injection-locked FabryPerot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol.27(14), 2779–2785 (2009). [CrossRef]
  12. G. R. Lin, Y. S. Liao, Y. C. Chi, H. C. Kuo, G. C. Lin, H. L. Wang, and Y. J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol.28(20), 2925–2932 (2010). [CrossRef]
  13. G.-R. Lin, Y. H. Lin, C. J. Lin, Y. C. Chi, and G. C. Lin, “Reusing a data-erased ASE carrier in a weak-resonant-cavity laser diode for noise-suppressed error-free transmission,” IEEE J. Quantum Electron.47(5), 676–685 (2011). [CrossRef]
  14. Y. C. Chi, Y. C. Li, H. Y. Wang, P. C. Peng, H. H. Lu, and G. R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express20(18), 20071–20077 (2012). [CrossRef] [PubMed]
  15. Y. S. Liao, Y. C. Chi, H. C. Kuo, and G. R. Lin, “Pulsating master and injected slave weak-resonant-cavity laser diodes based quasi-color-free 2.5Gb/s RZ DWDM-PON,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper JWA67.
  16. G.-R. Lin, T. K. Cheng, Y.-C. Chi, G. C. Lin, H. L. Wang, and Y. H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express17(20), 17739–17746 (2009). [CrossRef] [PubMed]
  17. D. Wulich, “Definition of efficient PAPR in OFDM,” IEEE Commun. Lett.9(9), 832–834 (2005). [CrossRef]
  18. H. G. Myung and D. J. Goodman, in Single carrier FDMA: a new air interface for long term evolution, X. Shen and Y. Pan ed. (Wiley, New York, 2008).
  19. S. Sivaprakasam and R. Singh, “Gain change and threshold reduction of diode laser by injection-locking,” Opt. Commun.151(4-6), 253–256 (1998). [CrossRef]
  20. Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express12(19), 4449–4456 (2004). [CrossRef] [PubMed]
  21. G.-R. Lin, Y. H. Lin, and Y. C. Chang, “Theory and experiments of a mode-beating noise-suppressed and mutually injection-locked Fabry-Perot laser diode and erbium-doped fiber amplifier link,” IEEE J. Quantum Electron.40(8), 1014–1022 (2004). [CrossRef]
  22. S. Daumont, B. Rihawi, and Y. Lout, “Root-raised cosine filter influences on PAPR distribution of single-carrier signals,” in Proceedings of IEEE Conference on International Symposium Computer Science Society (Institute of Electrical and Electronics Engineers, New York, 2008), pp. 841–845. [CrossRef]
  23. G. R. Lin, Y. C. Chi, Y. S. Liao, H. C. Kuo, Z. W. Liao, H. L. Wang, and G. C. Lin, “A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission,” Opt. Express20(13), 13622–13635 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited